AI-RESEARCHER-2024 commited on
Commit
bd9c9bf
1 Parent(s): b33b43a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -37
app.py CHANGED
@@ -1,64 +1,105 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
  system_message,
14
  max_tokens,
15
  temperature,
16
- top_p,
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
 
32
  max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from llama_cpp import Llama
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from langchain_community.vectorstores import Chroma
6
+ from langchain.prompts import PromptTemplate
7
 
8
+ # Initialize the embedding model
9
+ embeddings = HuggingFaceEmbeddings(
10
+ model_name="sentence-transformers/all-MiniLM-L6-v2",
11
+ model_kwargs={'device': 'cpu'},
12
+ encode_kwargs={'normalize_embeddings': True}
13
+ )
14
+
15
+ # Load the existing Chroma vector store
16
+ persist_directory = os.path.join(os.path.dirname(__file__), 'mydb')
17
+ vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
18
+
19
+ # Initialize the Llama model
20
+ llm = Llama.from_pretrained(
21
+ repo_id="bartowski/Llama-3.2-1B-Instruct-GGUF",
22
+ filename="Llama-3.2-1B-Instruct-Q8_0.gguf",
23
+ )
24
+
25
+ # Create the RAG prompt template
26
+ template = """Answer the question based only on the following context:
27
+
28
+ {context}
29
+
30
+ Question: {question}
31
+
32
+ Answer the question in a clear and concise way. If you cannot find the answer in the context, just say "I don't have enough information to answer this question."
33
+
34
+ Make sure to:
35
+ 1. Only use information from the provided context
36
+ 2. Be concise and direct
37
+ 3. If you're unsure, acknowledge it
38
  """
 
 
 
39
 
40
+ prompt = PromptTemplate.from_template(template)
41
 
42
  def respond(
43
  message,
44
+ history,
45
  system_message,
46
  max_tokens,
47
  temperature,
48
+ # top_p,
49
  ):
50
+ # Build the messages list
51
  messages = [{"role": "system", "content": system_message}]
52
 
53
+ for user_msg, assistant_msg in history:
54
+ if user_msg:
55
+ messages.append({"role": "user", "content": user_msg})
56
+ if assistant_msg:
57
+ messages.append({"role": "assistant", "content": assistant_msg})
58
+
59
+ # Search the vector store
60
+ retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
61
+ docs = retriever.get_relevant_documents(message)
62
+ context = "\n\n".join([doc.page_content for doc in docs])
63
 
64
+ # Format the prompt
65
+ final_prompt = prompt.format(context=context, question=message)
66
 
67
+ # Add the formatted prompt to messages
68
+ messages.append({"role": "user", "content": final_prompt})
69
 
70
+ # Generate response using the Llama model
71
+ response = llm.create_chat_completion(
72
+ messages=messages,
73
  max_tokens=max_tokens,
 
74
  temperature=temperature,
75
+ # top_p=top_p,
76
+ )
 
77
 
78
+ # Extract the assistant's reply
79
+ assistant_reply = response['choices'][0]['message']['content']
80
 
81
+ return assistant_reply
82
 
83
+ # Create Gradio Chat Interface
 
 
84
  demo = gr.ChatInterface(
85
+ fn=respond,
86
  additional_inputs=[
87
+ gr.Textbox(value="You are a friendly chatbot.", label="System Message"),
88
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
89
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
90
+ # gr.Slider(
91
+ # minimum=0.1,
92
+ # maximum=1.0,
93
+ # value=0.95,
94
+ # step=0.05,
95
+ # label="Top-p (Nucleus Sampling)",
96
+ # ),
97
  ],
98
+ title="Document-Based QA with Llama",
99
+ description="A PDF Chat interface powered by the Llama model.",
100
+ examples=["What is a Computer?"],
101
+ theme="default",
102
  )
103
 
 
104
  if __name__ == "__main__":
105
+ demo.launch()