lmzjms's picture
Upload 591 files
9206300
import matplotlib
matplotlib.use('Agg')
from utils import audio
import matplotlib.pyplot as plt
from data_gen.tts.data_gen_utils import get_pitch
from tasks.tts.fs2_utils import FastSpeechDataset
from utils.cwt import cwt2f0
from utils.pl_utils import data_loader
import os
from multiprocessing.pool import Pool
from tqdm import tqdm
from modules.fastspeech.tts_modules import mel2ph_to_dur
from utils.hparams import hparams
from utils.plot import spec_to_figure, dur_to_figure, f0_to_figure
from utils.pitch_utils import denorm_f0
from modules.fastspeech.fs2 import FastSpeech2
from tasks.tts.tts import TtsTask
import torch
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import utils
import torch.distributions
import numpy as np
from modules.commons.ssim import ssim
class FastSpeech2Task(TtsTask):
def __init__(self):
super(FastSpeech2Task, self).__init__()
self.dataset_cls = FastSpeechDataset
self.mse_loss_fn = torch.nn.MSELoss()
mel_losses = hparams['mel_loss'].split("|")
self.loss_and_lambda = {}
for i, l in enumerate(mel_losses):
if l == '':
continue
if ':' in l:
l, lbd = l.split(":")
lbd = float(lbd)
else:
lbd = 1.0
self.loss_and_lambda[l] = lbd
print("| Mel losses:", self.loss_and_lambda)
self.sil_ph = self.phone_encoder.sil_phonemes()
@data_loader
def train_dataloader(self):
train_dataset = self.dataset_cls(hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_eval_tokens, self.max_eval_sentences)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(hparams['test_set_name'], shuffle=False)
return self.build_dataloader(test_dataset, False, self.max_eval_tokens,
self.max_eval_sentences, batch_by_size=False)
def build_tts_model(self):
self.model = FastSpeech2(self.phone_encoder)
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
self.load_ckpt(hparams['load_ckpt'], strict=True)
utils.print_arch(self.model)
return self.model
def _training_step(self, sample, batch_idx, _):
loss_output = self.run_model(self.model, sample)
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
mel_out = self.model.out2mel(model_out['mel_out'])
outputs = utils.tensors_to_scalars(outputs)
# if sample['mels'].shape[0] == 1:
# self.add_laplace_var(mel_out, sample['mels'], outputs)
if batch_idx < hparams['num_valid_plots']:
self.plot_mel(batch_idx, sample['mels'], mel_out)
self.plot_dur(batch_idx, sample, model_out)
if hparams['use_pitch_embed']:
self.plot_pitch(batch_idx, sample, model_out)
return outputs
def _validation_end(self, outputs):
all_losses_meter = {
'total_loss': utils.AvgrageMeter(),
}
for output in outputs:
n = output['nsamples']
for k, v in output['losses'].items():
if k not in all_losses_meter:
all_losses_meter[k] = utils.AvgrageMeter()
all_losses_meter[k].update(v, n)
all_losses_meter['total_loss'].update(output['total_loss'], n)
return {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
def run_model(self, model, sample, return_output=False):
txt_tokens = sample['txt_tokens'] # [B, T_t]
target = sample['mels'] # [B, T_s, 80]
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
energy = sample['energy']
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
if hparams['pitch_type'] == 'cwt':
cwt_spec = sample[f'cwt_spec']
f0_mean = sample['f0_mean']
f0_std = sample['f0_std']
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph)
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed,
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False)
losses = {}
self.add_mel_loss(output['mel_out'], target, losses)
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
if hparams['use_pitch_embed']:
self.add_pitch_loss(output, sample, losses)
if hparams['use_energy_embed']:
self.add_energy_loss(output['energy_pred'], energy, losses)
if not return_output:
return losses
else:
return losses, output
############
# losses
############
def add_mel_loss(self, mel_out, target, losses, postfix='', mel_mix_loss=None):
if mel_mix_loss is None:
for loss_name, lbd in self.loss_and_lambda.items():
if 'l1' == loss_name:
l = self.l1_loss(mel_out, target)
elif 'mse' == loss_name:
raise NotImplementedError
elif 'ssim' == loss_name:
l = self.ssim_loss(mel_out, target)
elif 'gdl' == loss_name:
raise NotImplementedError
losses[f'{loss_name}{postfix}'] = l * lbd
else:
raise NotImplementedError
def l1_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
l1_loss = F.l1_loss(decoder_output, target, reduction='none')
weights = self.weights_nonzero_speech(target)
l1_loss = (l1_loss * weights).sum() / weights.sum()
return l1_loss
def ssim_loss(self, decoder_output, target, bias=6.0):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
weights = self.weights_nonzero_speech(target)
decoder_output = decoder_output[:, None] + bias
target = target[:, None] + bias
ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
ssim_loss = (ssim_loss * weights).sum() / weights.sum()
return ssim_loss
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
"""
:param dur_pred: [B, T], float, log scale
:param mel2ph: [B, T]
:param txt_tokens: [B, T]
:param losses:
:return:
"""
B, T = txt_tokens.shape
nonpadding = (txt_tokens != 0).float()
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding
is_sil = torch.zeros_like(txt_tokens).bool()
for p in self.sil_ph:
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0])
is_sil = is_sil.float() # [B, T_txt]
# phone duration loss
if hparams['dur_loss'] == 'mse':
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none')
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
dur_pred = (dur_pred.exp() - 1).clamp(min=0)
elif hparams['dur_loss'] == 'mog':
return NotImplementedError
elif hparams['dur_loss'] == 'crf':
losses['pdur'] = -self.model.dur_predictor.crf(
dur_pred, dur_gt.long().clamp(min=0, max=31), mask=nonpadding > 0, reduction='mean')
losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']
# use linear scale for sent and word duration
if hparams['lambda_word_dur'] > 0:
word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
word_nonpadding = (word_dur_g > 0).float()
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
def add_pitch_loss(self, output, sample, losses):
if hparams['pitch_type'] == 'ph':
nonpadding = (sample['txt_tokens'] != 0).float()
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(output['pitch_pred'][:, :, 0], sample['f0'],
reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
return
mel2ph = sample['mel2ph'] # [B, T_s]
f0 = sample['f0']
uv = sample['uv']
nonpadding = (mel2ph != 0).float()
if hparams['pitch_type'] == 'cwt':
cwt_spec = sample[f'cwt_spec']
f0_mean = sample['f0_mean']
f0_std = sample['f0_std']
cwt_pred = output['cwt'][:, :, :10]
f0_mean_pred = output['f0_mean']
f0_std_pred = output['f0_std']
losses['C'] = self.cwt_loss(cwt_pred, cwt_spec) * hparams['lambda_f0']
if hparams['use_uv']:
assert output['cwt'].shape[-1] == 11
uv_pred = output['cwt'][:, :, -1]
losses['uv'] = (F.binary_cross_entropy_with_logits(uv_pred, uv, reduction='none') * nonpadding) \
.sum() / nonpadding.sum() * hparams['lambda_uv']
losses['f0_mean'] = F.l1_loss(f0_mean_pred, f0_mean) * hparams['lambda_f0']
losses['f0_std'] = F.l1_loss(f0_std_pred, f0_std) * hparams['lambda_f0']
if hparams['cwt_add_f0_loss']:
f0_cwt_ = self.model.cwt2f0_norm(cwt_pred, f0_mean_pred, f0_std_pred, mel2ph)
self.add_f0_loss(f0_cwt_[:, :, None], f0, uv, losses, nonpadding=nonpadding)
elif hparams['pitch_type'] == 'frame':
self.add_f0_loss(output['pitch_pred'], f0, uv, losses, nonpadding=nonpadding)
def add_f0_loss(self, p_pred, f0, uv, losses, nonpadding):
assert p_pred[..., 0].shape == f0.shape
if hparams['use_uv']:
assert p_pred[..., 1].shape == uv.shape
losses['uv'] = (F.binary_cross_entropy_with_logits(
p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_uv']
nonpadding = nonpadding * (uv == 0).float()
f0_pred = p_pred[:, :, 0]
if hparams['pitch_loss'] in ['l1', 'l2']:
pitch_loss_fn = F.l1_loss if hparams['pitch_loss'] == 'l1' else F.mse_loss
losses['f0'] = (pitch_loss_fn(f0_pred, f0, reduction='none') * nonpadding).sum() \
/ nonpadding.sum() * hparams['lambda_f0']
elif hparams['pitch_loss'] == 'ssim':
return NotImplementedError
def cwt_loss(self, cwt_p, cwt_g):
if hparams['cwt_loss'] == 'l1':
return F.l1_loss(cwt_p, cwt_g)
if hparams['cwt_loss'] == 'l2':
return F.mse_loss(cwt_p, cwt_g)
if hparams['cwt_loss'] == 'ssim':
return self.ssim_loss(cwt_p, cwt_g, 20)
def add_energy_loss(self, energy_pred, energy, losses):
nonpadding = (energy != 0).float()
loss = (F.mse_loss(energy_pred, energy, reduction='none') * nonpadding).sum() / nonpadding.sum()
loss = loss * hparams['lambda_energy']
losses['e'] = loss
############
# validation plots
############
def plot_mel(self, batch_idx, spec, spec_out, name=None):
spec_cat = torch.cat([spec, spec_out], -1)
name = f'mel_{batch_idx}' if name is None else name
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
self.logger.experiment.add_figure(name, spec_to_figure(spec_cat[0], vmin, vmax), self.global_step)
def plot_dur(self, batch_idx, sample, model_out):
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2ph_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = self.model.dur_predictor.out2dur(model_out['dur']).float()
txt = self.phone_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
self.logger.experiment.add_figure(
f'dur_{batch_idx}', dur_to_figure(dur_gt, dur_pred, txt), self.global_step)
def plot_pitch(self, batch_idx, sample, model_out):
f0 = sample['f0']
if hparams['pitch_type'] == 'ph':
mel2ph = sample['mel2ph']
f0 = self.expand_f0_ph(f0, mel2ph)
f0_pred = self.expand_f0_ph(model_out['pitch_pred'][:, :, 0], mel2ph)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, f0_pred[0]), self.global_step)
return
f0 = denorm_f0(f0, sample['uv'], hparams)
if hparams['pitch_type'] == 'cwt':
# cwt
cwt_out = model_out['cwt']
cwt_spec = cwt_out[:, :, :10]
cwt = torch.cat([cwt_spec, sample['cwt_spec']], -1)
self.logger.experiment.add_figure(f'cwt_{batch_idx}', spec_to_figure(cwt[0]), self.global_step)
# f0
f0_pred = cwt2f0(cwt_spec, model_out['f0_mean'], model_out['f0_std'], hparams['cwt_scales'])
if hparams['use_uv']:
assert cwt_out.shape[-1] == 11
uv_pred = cwt_out[:, :, -1] > 0
f0_pred[uv_pred > 0] = 0
f0_cwt = denorm_f0(sample['f0_cwt'], sample['uv'], hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], f0_cwt[0], f0_pred[0]), self.global_step)
elif hparams['pitch_type'] == 'frame':
# f0
uv_pred = model_out['pitch_pred'][:, :, 1] > 0
pitch_pred = denorm_f0(model_out['pitch_pred'][:, :, 0], uv_pred, hparams)
self.logger.experiment.add_figure(
f'f0_{batch_idx}', f0_to_figure(f0[0], None, pitch_pred[0]), self.global_step)
############
# infer
############
def test_step(self, sample, batch_idx):
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids')
txt_tokens = sample['txt_tokens']
mel2ph, uv, f0 = None, None, None
ref_mels = None
if hparams['profile_infer']:
pass
else:
if hparams['use_gt_dur']:
mel2ph = sample['mel2ph']
if hparams['use_gt_f0']:
f0 = sample['f0']
uv = sample['uv']
print('Here using gt f0!!')
if hparams.get('use_midi') is not None and hparams['use_midi']:
outputs = self.model(
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True,
pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur'))
else:
outputs = self.model(
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=ref_mels, infer=True)
sample['outputs'] = self.model.out2mel(outputs['mel_out'])
sample['mel2ph_pred'] = outputs['mel2ph']
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel
sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] # pe predict from Pred mel
else:
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams)
sample['f0_pred'] = outputs.get('f0_denorm')
return self.after_infer(sample)
def after_infer(self, predictions):
if self.saving_result_pool is None and not hparams['profile_infer']:
self.saving_result_pool = Pool(min(int(os.getenv('N_PROC', os.cpu_count())), 16))
self.saving_results_futures = []
predictions = utils.unpack_dict_to_list(predictions)
t = tqdm(predictions)
for num_predictions, prediction in enumerate(t):
for k, v in prediction.items():
if type(v) is torch.Tensor:
prediction[k] = v.cpu().numpy()
item_name = prediction.get('item_name')
text = prediction.get('text').replace(":", "%3A")[:80]
# remove paddings
mel_gt = prediction["mels"]
mel_gt_mask = np.abs(mel_gt).sum(-1) > 0
mel_gt = mel_gt[mel_gt_mask]
mel2ph_gt = prediction.get("mel2ph")
mel2ph_gt = mel2ph_gt[mel_gt_mask] if mel2ph_gt is not None else None
mel_pred = prediction["outputs"]
mel_pred_mask = np.abs(mel_pred).sum(-1) > 0
mel_pred = mel_pred[mel_pred_mask]
mel_gt = np.clip(mel_gt, hparams['mel_vmin'], hparams['mel_vmax'])
mel_pred = np.clip(mel_pred, hparams['mel_vmin'], hparams['mel_vmax'])
mel2ph_pred = prediction.get("mel2ph_pred")
if mel2ph_pred is not None:
if len(mel2ph_pred) > len(mel_pred_mask):
mel2ph_pred = mel2ph_pred[:len(mel_pred_mask)]
mel2ph_pred = mel2ph_pred[mel_pred_mask]
f0_gt = prediction.get("f0")
f0_pred = prediction.get("f0_pred")
if f0_pred is not None:
f0_gt = f0_gt[mel_gt_mask]
if len(f0_pred) > len(mel_pred_mask):
f0_pred = f0_pred[:len(mel_pred_mask)]
f0_pred = f0_pred[mel_pred_mask]
str_phs = None
if self.phone_encoder is not None and 'txt_tokens' in prediction:
str_phs = self.phone_encoder.decode(prediction['txt_tokens'], strip_padding=True)
gen_dir = os.path.join(hparams['work_dir'],
f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
wav_pred = self.vocoder.spec2wav(mel_pred, f0=f0_pred)
if not hparams['profile_infer']:
os.makedirs(gen_dir, exist_ok=True)
os.makedirs(f'{gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{gen_dir}/plot', exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'P_mels_npy'), exist_ok=True)
os.makedirs(os.path.join(hparams['work_dir'], 'G_mels_npy'), exist_ok=True)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_pred, mel_pred, 'P', item_name, text, gen_dir, str_phs, mel2ph_pred, f0_gt, f0_pred]))
if mel_gt is not None and hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
self.saving_results_futures.append(
self.saving_result_pool.apply_async(self.save_result, args=[
wav_gt, mel_gt, 'G', item_name, text, gen_dir, str_phs, mel2ph_gt, f0_gt, f0_pred]))
if hparams['save_f0']:
import matplotlib.pyplot as plt
# f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
f0_pred_ = f0_pred
f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
fig = plt.figure()
plt.plot(f0_pred_, label=r'$f0_P$')
plt.plot(f0_gt_, label=r'$f0_G$')
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
# f0_midi = prediction.get("f0_midi")
# f0_midi = f0_midi[mel_gt_mask]
# plt.plot(f0_midi, label=r'$f0_M$')
pass
plt.legend()
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/[F0][{item_name}]{text}.png', format='png')
plt.close(fig)
t.set_description(
f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
else:
if 'gen_wav_time' not in self.stats:
self.stats['gen_wav_time'] = 0
self.stats['gen_wav_time'] += len(wav_pred) / hparams['audio_sample_rate']
print('gen_wav_time: ', self.stats['gen_wav_time'])
return {}
@staticmethod
def save_result(wav_out, mel, prefix, item_name, text, gen_dir, str_phs=None, mel2ph=None, gt_f0=None, pred_f0=None):
item_name = item_name.replace('/', '-')
base_fn = f'[{item_name}][{prefix}]'
if text is not None:
base_fn += text
base_fn += ('-' + hparams['exp_name'])
np.save(os.path.join(hparams['work_dir'], f'{prefix}_mels_npy', item_name), mel)
audio.save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
if hparams.get('pe_enable') is not None and hparams['pe_enable']:
gt_f0 = (gt_f0 - 100) / (800 - 100) * 80 * (gt_f0 > 0)
pred_f0 = (pred_f0 - 100) / (800 - 100) * 80 * (pred_f0 > 0)
plt.plot(pred_f0, c='white', linewidth=1, alpha=0.6)
plt.plot(gt_f0, c='red', linewidth=1, alpha=0.6)
else:
f0, _ = get_pitch(wav_out, mel, hparams)
f0 = (f0 - 100) / (800 - 100) * 80 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2ph_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png', dpi=1000)
plt.close(fig)
##############
# utils
##############
@staticmethod
def expand_f0_ph(f0, mel2ph):
f0 = denorm_f0(f0, None, hparams)
f0 = F.pad(f0, [1, 0])
f0 = torch.gather(f0, 1, mel2ph) # [B, T_mel]
return f0
if __name__ == '__main__':
FastSpeech2Task.start()