lmzjms's picture
Upload 591 files
9206300
import os
import torch
import torch.nn.functional as F
from torch import nn
from modules.portaspeech.portaspeech import PortaSpeech
from tasks.tts.fs2 import FastSpeech2Task
from utils.tts_utils import mel2token_to_dur
from utils.hparams import hparams
from utils.tts_utils import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate
from utils import num_params
import numpy as np
from utils.plot import spec_to_figure
from data_gen.tts.data_gen_utils import build_token_encoder
class PortaSpeechTask(FastSpeech2Task):
def __init__(self):
super().__init__()
data_dir = hparams['binary_data_dir']
self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json')
def build_tts_model(self):
ph_dict_size = len(self.token_encoder)
word_dict_size = len(self.word_encoder)
self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams)
def on_train_start(self):
super().on_train_start()
for n, m in self.model.named_children():
num_params(m, model_name=n)
if hasattr(self.model, 'fvae'):
for n, m in self.model.fvae.named_children():
num_params(m, model_name=f'fvae.{n}')
def run_model(self, sample, infer=False, *args, **kwargs):
txt_tokens = sample['txt_tokens']
word_tokens = sample['word_tokens']
spk_embed = sample.get('spk_embed')
spk_id = sample.get('spk_ids')
if not infer:
output = self.model(txt_tokens, word_tokens,
ph2word=sample['ph2word'],
mel2word=sample['mel2word'],
mel2ph=sample['mel2ph'],
word_len=sample['word_lengths'].max(),
tgt_mels=sample['mels'],
pitch=sample.get('pitch'),
spk_embed=spk_embed,
spk_id=spk_id,
infer=False,
global_step=self.global_step)
losses = {}
losses['kl_v'] = output['kl'].detach()
losses_kl = output['kl']
losses_kl = torch.clamp(losses_kl, min=hparams['kl_min'])
losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl
losses_kl = losses_kl * hparams['lambda_kl']
losses['kl'] = losses_kl
self.add_mel_loss(output['mel_out'], sample['mels'], losses)
if hparams['dur_level'] == 'word':
self.add_dur_loss(
output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses)
self.get_attn_stats(output['attn'], sample, losses)
else:
super(PortaSpeechTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses)
return losses, output
else:
use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
output = self.model(
txt_tokens, word_tokens,
ph2word=sample['ph2word'],
word_len=sample['word_lengths'].max(),
pitch=sample.get('pitch'),
mel2ph=sample['mel2ph'] if use_gt_dur else None,
mel2word=sample['mel2word'] if use_gt_dur else None,
tgt_mels=sample['mels'],
infer=True,
spk_embed=spk_embed,
spk_id=spk_id,
)
return output
def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None):
T = word_len.max()
dur_gt = mel2token_to_dur(mel2token, T).float()
nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float()
dur_pred = dur_pred * nonpadding
dur_gt = dur_gt * nonpadding
wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
wdur = (wdur * nonpadding).sum() / nonpadding.sum()
if hparams['lambda_word_dur'] > 0:
losses['wdur'] = wdur * hparams['lambda_word_dur']
if hparams['lambda_sent_dur'] > 0:
sent_dur_p = dur_pred.sum(-1)
sent_dur_g = dur_gt.sum(-1)
sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean')
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']
def validation_step(self, sample, batch_idx):
return super().validation_step(sample, batch_idx)
def save_valid_result(self, sample, batch_idx, model_out):
super(PortaSpeechTask, self).save_valid_result(sample, batch_idx, model_out)
if self.global_step > 0 and hparams['dur_level'] == 'word':
self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)
def get_attn_stats(self, attn, sample, logging_outputs, prefix=''):
# diagonal_focus_rate
txt_lengths = sample['txt_lengths'].float()
mel_lengths = sample['mel_lengths'].float()
src_padding_mask = sample['txt_tokens'].eq(0)
target_padding_mask = sample['mels'].abs().sum(-1).eq(0)
src_seg_mask = sample['txt_tokens'].eq(self.seg_idx)
attn_ks = txt_lengths.float() / mel_lengths.float()
focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data
phone_coverage_rate = get_phone_coverage_rate(
attn, src_padding_mask, src_seg_mask, target_padding_mask).mean()
diagonal_focus_rate, diag_mask = get_diagonal_focus_rate(
attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask)
logging_outputs[f'{prefix}fr'] = focus_rate.mean().data
logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data
logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data
def get_plot_dur_info(self, sample, model_out):
if hparams['dur_level'] == 'word':
T_txt = sample['word_lengths'].max()
dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = sample['ph_words'][0].split(" ")
else:
T_txt = sample['txt_tokens'].shape[1]
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
txt = txt.split(" ")
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
def build_optimizer(self, model):
self.optimizer = torch.optim.AdamW(
self.model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return self.optimizer
def build_scheduler(self, optimizer):
return FastSpeechTask.build_scheduler(self, optimizer)
############
# infer
############
def test_start(self):
super().test_start()
if hparams.get('save_attn', False):
os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
self.model.store_inverse_all()
def test_step(self, sample, batch_idx):
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
mel2ph = sample['mel2ph'][0].cpu().numpy()
mel2ph_pred = None
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
if hparams.get('save_attn', False):
attn = outputs['attn'][0].cpu().numpy()
np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}