AudioGPT / NeuralSeq /tasks /tts /tts_utils.py
lmzjms's picture
Upload 591 files
9206300
import importlib
from data_gen.tts.base_binarizer import BaseBinarizer
from data_gen.tts.base_preprocess import BasePreprocessor
from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
from utils.hparams import hparams
def parse_dataset_configs():
max_tokens = hparams['max_tokens']
max_sentences = hparams['max_sentences']
max_valid_tokens = hparams['max_valid_tokens']
if max_valid_tokens == -1:
hparams['max_valid_tokens'] = max_valid_tokens = max_tokens
max_valid_sentences = hparams['max_valid_sentences']
if max_valid_sentences == -1:
hparams['max_valid_sentences'] = max_valid_sentences = max_sentences
return max_tokens, max_sentences, max_valid_tokens, max_valid_sentences
def parse_mel_losses():
mel_losses = hparams['mel_losses'].split("|")
loss_and_lambda = {}
for i, l in enumerate(mel_losses):
if l == '':
continue
if ':' in l:
l, lbd = l.split(":")
lbd = float(lbd)
else:
lbd = 1.0
loss_and_lambda[l] = lbd
print("| Mel losses:", loss_and_lambda)
return loss_and_lambda
def load_data_preprocessor():
preprocess_cls = hparams["preprocess_cls"]
pkg = ".".join(preprocess_cls.split(".")[:-1])
cls_name = preprocess_cls.split(".")[-1]
preprocessor: BasePreprocessor = getattr(importlib.import_module(pkg), cls_name)()
preprocess_args = {}
preprocess_args.update(hparams['preprocess_args'])
return preprocessor, preprocess_args
def load_data_binarizer():
binarizer_cls = hparams['binarizer_cls']
pkg = ".".join(binarizer_cls.split(".")[:-1])
cls_name = binarizer_cls.split(".")[-1]
binarizer: BaseBinarizer = getattr(importlib.import_module(pkg), cls_name)()
binarization_args = {}
binarization_args.update(hparams['binarization_args'])
return binarizer, binarization_args