import torch import numpy as np import gradio as gr from PIL import Image from omegaconf import OmegaConf from pathlib import Path from vocoder.bigvgan.models import VocoderBigVGAN from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config from wav_evaluation.models.CLAPWrapper import CLAPWrapper SAMPLE_RATE = 16000 torch.set_grad_enabled(False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") def initialize_model(config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False) model = model.to(device) model.cond_stage_model.to(model.device) model.cond_stage_model.device = model.device print(model.device,device,model.cond_stage_model.device) sampler = DDIMSampler(model) return sampler sampler = initialize_model('configs/text_to_audio/txt2audio_args.yaml', 'useful_ckpts/ta40multi_epoch=000085.ckpt') vocoder = VocoderBigVGAN('vocoder/logs/bigv16k53w',device=device) clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available()) def select_best_audio(prompt,wav_list): text_embeddings = clap_model.get_text_embeddings([prompt]) score_list = [] for data in wav_list: sr,wav = data audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True) score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy() score_list.append(score) max_index = np.array(score_list).argmax() print(score_list,max_index) return wav_list[max_index] def txt2audio(sampler,vocoder,prompt, seed, scale, ddim_steps, n_samples=1, W=624, H=80): prng = np.random.RandomState(seed) start_code = prng.randn(n_samples, sampler.model.first_stage_model.embed_dim, H // 8, W // 8) start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) uc = None if scale != 1.0: uc = sampler.model.get_learned_conditioning(n_samples * [""]) c = sampler.model.get_learned_conditioning(n_samples * [prompt])# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding shape = [sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x) samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=c, batch_size=n_samples, shape=shape, verbose=False, unconditional_guidance_scale=scale, unconditional_conditioning=uc, x_T=start_code) x_samples_ddim = sampler.model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1] wav_list = [] for idx,spec in enumerate(x_samples_ddim): wav = vocoder.vocode(spec) wav_list.append((SAMPLE_RATE,wav)) best_wav = select_best_audio(prompt,wav_list) return best_wav def predict(prompt, ddim_steps, num_samples, scale, seed):# 经过试验,这个input_image需要是256x256、512x512的大小效果才正常,实际应该resize一下,输出再resize回去,但是他们使用的是pad,不知道为什么 melbins,mel_len = 80,624 with torch.no_grad(): result = txt2audio( sampler=sampler, vocoder=vocoder, prompt=prompt, seed=seed, scale=scale, ddim_steps=ddim_steps, n_samples=num_samples, H=melbins, W=mel_len ) return result with gr.Blocks() as demo: with gr.Row(): gr.Markdown("## Make-An-Audio: Text-to-Audio Generation") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt: Input your text here. ") run_button = gr.Button(label="Run") with gr.Accordion("Advanced options", open=False): num_samples = gr.Slider( label="Select from audios num.This number control the number of candidates \ (e.g., generate three audios and choose the best to show you). A Larger value usually lead to \ better quality with heavier computation", minimum=1, maximum=10, value=3, step=1) # num_samples = 1 ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=150, value=100, step=1) scale = gr.Slider( label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=4.0, value=1.5, step=0.1 ) seed = gr.Slider( label="Seed:Change this value (any integer number) will lead to a different generation result.", minimum=0, maximum=2147483647, step=1, value=44, ) with gr.Column(): # audio_list = [] # for i in range(int(num_samples)): # audio_list.append(gr.outputs.Audio()) outaudio = gr.Audio() run_button.click(fn=predict, inputs=[ prompt,ddim_steps, num_samples, scale, seed], outputs=[outaudio])# inputs的参数只能传gr.xxx with gr.Row(): with gr.Column(): gr.Examples( examples = [['a dog barking and a bird chirping',100,3,1.5,55],['fireworks pop and explode',100,3,1.5,55], ['piano and violin plays',100,3,1.5,55],['wind thunder and rain falling',100,3,1.5,55],['music made by drum kit',100,3,1.5,55]], inputs = [prompt,ddim_steps, num_samples, scale, seed], outputs = [outaudio] ) with gr.Column(): pass demo.launch(share=True)