File size: 7,114 Bytes
bd63939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import contextlib
import logging
import os
import time
import datetime

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F


from .qformer_causual import BertConfig, BertLMHeadModel

from .utils import download_cached_file, get_rank, get_dist_info, get_world_size, main_process, is_dist_avail_and_initialized, is_url
from .eva_vit import create_eva_vit_g
from .clip_vit import create_clip_vit_L
from transformers import BertTokenizer


# class Blip2Base(BaseModel):
class Blip2Base(nn.Module):
    def __init__(self):
        super().__init__()

    @property
    def device(self):
        return list(self.parameters())[0].device

    @classmethod
    def init_tokenizer(cls, truncation_side="right"):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        return tokenizer

    def maybe_autocast(self, dtype=torch.float16):
        # if on cpu, don't use autocast
        # if on gpu, use autocast with dtype if provided, otherwise use torch.float16
        enable_autocast = self.device != torch.device("cpu")

        if enable_autocast:
            return torch.cuda.amp.autocast(dtype=dtype)
        else:
            return contextlib.nullcontext()

    @classmethod
    def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel.from_pretrained("bert-base-uncased", config=encoder_config)
        query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size))
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens

    def init_vision_encoder(self, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision):
        assert model_name in [
            "eva_clip_g",
            "eva2_clip_L",
            "clip_L",
        ], "vit model must be eva_clip_g, eva2_clip_L or clip_L"
        if model_name == "eva_clip_g":
            visual_encoder = create_eva_vit_g(img_size, drop_path_rate, use_grad_checkpoint, precision)

        elif model_name == "clip_L":
            visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision)
        ln_vision = LayerNorm(visual_encoder.num_features)
        self.vit_name = model_name
        return visual_encoder, ln_vision

    def load_from_pretrained(self, url_or_filename):
        if is_url(url_or_filename):
            cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
            checkpoint = torch.load(cached_file, map_location="cpu")
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location="cpu")
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        state_dict = checkpoint["model"]

        msg = self.load_state_dict(state_dict, strict=False)

        # logging.info("Missing keys {}".format(msg.missing_keys))
        logging.info("load checkpoint from %s" % url_or_filename)

        return msg

    def get_optimizer_params(self, weight_decay, lr_scale=1):
        if self.vit_name == "eva_clip_g":
            vit_num_layers = self.visual_encoder.get_num_layer()
            lr_scales = list(lr_scale**(vit_num_layers + 1 - i) for i in range(vit_num_layers + 2))

            parameter_group_names = {}
            parameter_group_vars = {}

            for name, param in self.named_parameters():
                if not param.requires_grad:
                    continue  # frozen weights
                if len(param.shape) == 1 or name.endswith(".bias"):
                    group_name = "no_decay"
                    this_weight_decay = 0.
                else:
                    group_name = "decay"
                    this_weight_decay = weight_decay
                if 'visual_encoder' in name:
                    layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.', ''))
                    group_name = "vit_layer_%d_%s" % (layer_id, group_name)
                else:
                    layer_id = None

                if group_name not in parameter_group_names:
                    if layer_id is not None:
                        scale = lr_scales[layer_id]
                    else:
                        scale = 1
                    parameter_group_names[group_name] = {"weight_decay": this_weight_decay, "params": [], "lr_scale": scale}
                    parameter_group_vars[group_name] = {"weight_decay": this_weight_decay, "params": [], "lr_scale": scale}
                parameter_group_vars[group_name]["params"].append(param)
                parameter_group_names[group_name]["params"].append(name)
            # import json
            # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
            optim_params = list(parameter_group_vars.values())
            return optim_params
        else:
            return super().get_optimizer_params(weight_decay, lr_scale)

    def _lemmatize(self, answers):
        def apply(answer):
            doc = self.lemmatizer(answer)

            words = []
            for token in doc:
                if token.pos_ in ["NOUN", "VERB"]:
                    words.append(token.lemma_)
                else:
                    words.append(token.text)
            answer = " ".join(words)

            return answer

        return [apply(answer) for answer in answers]

    @property
    def lemmatizer(self):
        if self._lemmatizer is None:
            try:
                import spacy

                self._lemmatizer = spacy.load("en_core_web_sm")
            except ImportError:
                logging.error("""
                    Please install spacy and en_core_web_sm model to apply lemmatization.
                    python -m spacy download en_core_web_sm
                    OR
                    import spacy.cli
                    spacy.cli.download("en_core_web_sm")
                    """)
                exit(1)

        return self._lemmatizer


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""
    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)