File size: 10,190 Bytes
bd63939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from collections import OrderedDict
from itertools import repeat
import collections.abc
import math

import torch
import torch.nn.functional as F
from torch import nn


from .eva_vit import convert_weights_to_fp16
from .utils import download_cached_file


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.relu2 = nn.ReLU(inplace=True)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu3 = nn.ReLU(inplace=True)

        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(
                OrderedDict([("-1", nn.AvgPool2d(stride)),
                             ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
                             ("1", nn.BatchNorm2d(planes * self.expansion))]))

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu1(self.bn1(self.conv1(x)))
        out = self.relu2(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu3(out)
        return out


class AttentionPool2d(nn.Module):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(query=x,
                                              key=x,
                                              value=x,
                                              embed_dim_to_check=x.shape[-1],
                                              num_heads=self.num_heads,
                                              q_proj_weight=self.q_proj.weight,
                                              k_proj_weight=self.k_proj.weight,
                                              v_proj_weight=self.v_proj.weight,
                                              in_proj_weight=None,
                                              in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
                                              bias_k=None,
                                              bias_v=None,
                                              add_zero_attn=False,
                                              dropout_p=0,
                                              out_proj_weight=self.c_proj.weight,
                                              out_proj_bias=self.c_proj.bias,
                                              use_separate_proj_weight=True,
                                              training=self.training,
                                              need_weights=False)

        return x[0]


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""
    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
                         ("c_proj", nn.Linear(d_model * 4, d_model))]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

        # if use_grad_checkpointing:
        # self.attn = checkpoint_wrapper(self.attn)
        # self.mlp = checkpoint_wrapper(self.mlp)
        # raise NotImplementedError

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_grad_checkpointing=False):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(
            *[ResidualAttentionBlock(width, heads, attn_mask, use_grad_checkpointing and i > 12) for i in range(layers)])

    def forward(self, x: torch.Tensor):
        return self.resblocks(x)


class VisionTransformer(nn.Module):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int,
                 use_grad_checkpointing: bool):
        super().__init__()
        self.input_resolution = input_resolution
        self.num_features = width
        self.num_heads = heads
        self.num_patches = (input_resolution // patch_size)**2
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width**-0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn(self.num_patches + 1, width))
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads, use_grad_checkpointing=use_grad_checkpointing)

#         self.ln_final = LayerNorm(width)

    def forward(self, x: torch.Tensor):

        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat(
            [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x],
            dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        #         x = self.ln_final(x)
        return x


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_2tuple = _ntuple(2)


def interpolate_pos_embed(model, state_dict, interpolation: str = 'bicubic', seq_dim=1):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get('positional_embedding', None)

    grid_size = round((model.positional_embedding.shape[0] - 1)**0.5)
    if old_pos_embed is None:
        return
    grid_size = to_2tuple(grid_size)
    extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed

    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))

    print('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        align_corners=True,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict['positional_embedding'] = new_pos_embed


def create_clip_vit_L(img_size=224, use_checkpoint=False, precision="fp16"):
    model = VisionTransformer(
        input_resolution=img_size,
        patch_size=14,
        width=1024,
        layers=23,
        heads=16,
        use_grad_checkpointing=use_checkpoint,
    )
    url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/clip_vit_L.pth"
    cached_file = download_cached_file(url, check_hash=False, progress=True)
    state_dict = torch.load(cached_file, map_location="cpu")
    interpolate_pos_embed(model, state_dict)

    incompatible_keys = model.load_state_dict(state_dict, strict=False)
    # print(incompatible_keys)

    if precision == "fp16":
        convert_weights_to_fp16(model)
    return model