Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import warnings | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import PIL | |
import torch | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.utils.import_utils import is_accelerate_available | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.embeddings import get_timestep_embedding | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import is_accelerate_version, logging, randn_tensor, replace_example_docstring | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import requests | |
>>> import torch | |
>>> from PIL import Image | |
>>> from io import BytesIO | |
>>> from diffusers import StableUnCLIPImg2ImgPipeline | |
>>> pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( | |
... "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 | |
... ) # TODO update model path | |
>>> pipe = pipe.to("cuda") | |
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" | |
>>> response = requests.get(url) | |
>>> init_image = Image.open(BytesIO(response.content)).convert("RGB") | |
>>> init_image = init_image.resize((768, 512)) | |
>>> prompt = "A fantasy landscape, trending on artstation" | |
>>> images = pipe(prompt, init_image).images | |
>>> images[0].save("fantasy_landscape.png") | |
``` | |
""" | |
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): | |
""" | |
Pipeline for text-guided image-to-image generation using stable unCLIP. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
feature_extractor ([`CLIPImageProcessor`]): | |
Feature extractor for image pre-processing before being encoded. | |
image_encoder ([`CLIPVisionModelWithProjection`]): | |
CLIP vision model for encoding images. | |
image_normalizer ([`StableUnCLIPImageNormalizer`]): | |
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image | |
embeddings after the noise has been applied. | |
image_noising_scheduler ([`KarrasDiffusionSchedulers`]): | |
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined | |
by the `noise_level`. | |
tokenizer (`~transformers.CLIPTokenizer`): | |
A [`~transformers.CLIPTokenizer`)]. | |
text_encoder ([`~transformers.CLIPTextModel`]): | |
Frozen [`~transformers.CLIPTextModel`] text-encoder. | |
unet ([`UNet2DConditionModel`]): | |
A [`UNet2DConditionModel`] to denoise the encoded image latents. | |
scheduler ([`KarrasDiffusionSchedulers`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
""" | |
_exclude_from_cpu_offload = ["image_normalizer"] | |
# image encoding components | |
feature_extractor: CLIPImageProcessor | |
image_encoder: CLIPVisionModelWithProjection | |
# image noising components | |
image_normalizer: StableUnCLIPImageNormalizer | |
image_noising_scheduler: KarrasDiffusionSchedulers | |
# regular denoising components | |
tokenizer: CLIPTokenizer | |
text_encoder: CLIPTextModel | |
unet: UNet2DConditionModel | |
scheduler: KarrasDiffusionSchedulers | |
vae: AutoencoderKL | |
def __init__( | |
self, | |
# image encoding components | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection, | |
# image noising components | |
image_normalizer: StableUnCLIPImageNormalizer, | |
image_noising_scheduler: KarrasDiffusionSchedulers, | |
# regular denoising components | |
tokenizer: CLIPTokenizer, | |
text_encoder: CLIPTextModel, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
# vae | |
vae: AutoencoderKL, | |
): | |
super().__init__() | |
self.register_modules( | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
image_normalizer=image_normalizer, | |
image_noising_scheduler=image_noising_scheduler, | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
unet=unet, | |
scheduler=scheduler, | |
vae=vae, | |
) | |
self.vae_scale_factor = 2**(len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing | |
def enable_vae_slicing(self): | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.vae.enable_slicing() | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing | |
def disable_vae_slicing(self): | |
r""" | |
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_slicing() | |
def enable_model_cpu_offload(self, gpu_id=0): | |
r""" | |
Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a | |
time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs. | |
Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the | |
iterative execution of the `unet`. | |
""" | |
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): | |
from accelerate import cpu_offload_with_hook | |
else: | |
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") | |
device = torch.device(f"cuda:{gpu_id}") | |
if self.device.type != "cpu": | |
self.to("cpu", silence_dtype_warnings=True) | |
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) | |
hook = None | |
for cpu_offloaded_model in [self.text_encoder, self.image_encoder, self.unet, self.vae]: | |
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) | |
# We'll offload the last model manually. | |
self.final_offload_hook = hook | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1]) | |
logger.warning("The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}") | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}.") | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`.") | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
def _encode_image( | |
self, | |
image, | |
device, | |
batch_size, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
noise_level, | |
generator, | |
image_embeds, | |
negative_image_embeds, | |
): | |
dtype = next(self.image_encoder.parameters()).dtype | |
if isinstance(image, PIL.Image.Image): | |
# the image embedding should repeated so it matches the total batch size of the prompt | |
repeat_by = batch_size | |
else: | |
# assume the image input is already properly batched and just needs to be repeated so | |
# it matches the num_images_per_prompt. | |
# | |
# NOTE(will) this is probably missing a few number of side cases. I.e. batched/non-batched | |
# `image_embeds`. If those happen to be common use cases, let's think harder about | |
# what the expected dimensions of inputs should be and how we handle the encoding. | |
repeat_by = num_images_per_prompt | |
if image_embeds is None: | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = self.noise_image_embeddings( | |
image_embeds=image_embeds, | |
noise_level=noise_level, | |
generator=generator, | |
) | |
# duplicate image embeddings for each generation per prompt, using mps friendly method | |
image_embeds = image_embeds.unsqueeze(1) | |
bs_embed, seq_len, _ = image_embeds.shape | |
image_embeds = image_embeds.repeat(1, repeat_by, 1) | |
image_embeds = image_embeds.view(bs_embed * repeat_by, seq_len, -1) | |
image_embeds = image_embeds.squeeze(1) | |
if negative_image_embeds is not None: | |
negative_image_embeds = self.noise_image_embeddings( | |
image_embeds=negative_image_embeds, | |
noise_level=0, | |
generator=generator, | |
) | |
# duplicate negative image embeddings for each generation per prompt, using mps friendly method | |
negative_image_embeds = negative_image_embeds.unsqueeze(1) | |
bs_embed, seq_len, _ = negative_image_embeds.shape | |
negative_image_embeds = negative_image_embeds.repeat(1, repeat_by, 1) | |
negative_image_embeds = negative_image_embeds.view(bs_embed * repeat_by, seq_len, -1) | |
negative_image_embeds = negative_image_embeds.squeeze(1) | |
if do_classifier_free_guidance: | |
if negative_image_embeds is None: | |
negative_image_embeds = torch.zeros_like(image_embeds) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
return image_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
warnings.warn( | |
"The decode_latents method is deprecated and will be removed in a future version. Please" | |
" use VaeImageProcessor instead", | |
FutureWarning, | |
) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
image, | |
height, | |
width, | |
callback_steps, | |
noise_level, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
image_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if (callback_steps is None) or (callback_steps is not None and | |
(not isinstance(callback_steps, int) or callback_steps <= 0)): | |
raise ValueError(f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}.") | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError("Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two.") | |
if prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.") | |
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
"Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined." | |
) | |
if prompt is not None and negative_prompt is not None: | |
if type(prompt) is not type(negative_prompt): | |
raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}.") | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}.") | |
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: | |
raise ValueError( | |
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." | |
) | |
if image is not None and image_embeds is not None: | |
raise ValueError("Provide either `image` or `image_embeds`. Please make sure to define only one of the two.") | |
if image is None and image_embeds is None: | |
raise ValueError( | |
"Provide either `image` or `image_embeds`. Cannot leave both `image` and `image_embeds` undefined.") | |
if image is not None: | |
if (not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list)): | |
raise ValueError( | |
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
f" {type(image)}") | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators.") | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings | |
def noise_image_embeddings( | |
self, | |
image_embeds: torch.Tensor, | |
noise_level: int, | |
noise: Optional[torch.FloatTensor] = None, | |
generator: Optional[torch.Generator] = None, | |
): | |
""" | |
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher | |
`noise_level` increases the variance in the final un-noised images. | |
The noise is applied in two ways: | |
1. A noise schedule is applied directly to the embeddings. | |
2. A vector of sinusoidal time embeddings are appended to the output. | |
In both cases, the amount of noise is controlled by the same `noise_level`. | |
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. | |
""" | |
if noise is None: | |
noise = randn_tensor(image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype) | |
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) | |
self.image_normalizer.to(image_embeds.device) | |
image_embeds = self.image_normalizer.scale(image_embeds) | |
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) | |
image_embeds = self.image_normalizer.unscale(image_embeds) | |
noise_level = get_timestep_embedding(timesteps=noise_level, | |
embedding_dim=image_embeds.shape[-1], | |
flip_sin_to_cos=True, | |
downscale_freq_shift=0) | |
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors, | |
# but we might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
noise_level = noise_level.to(image_embeds.dtype) | |
image_embeds = torch.cat((image_embeds, noise_level), 1) | |
return image_embeds | |
def __call__( | |
self, | |
image: Union[torch.FloatTensor, PIL.Image.Image] = None, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 20, | |
guidance_scale: float = 10, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
noise_level: int = 0, | |
image_embeds: Optional[torch.FloatTensor] = None, | |
negative_image_embeds: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, either `prompt_embeds` will be | |
used or prompt is initialized to `""`. | |
image (`torch.FloatTensor` or `PIL.Image.Image`): | |
`Image` or tensor representing an image batch. The image is encoded to its CLIP embedding which the | |
`unet` is conditioned on. The image is _not_ encoded by the `vae` and then used as the latents in the | |
denoising process like it is in the standard Stable Diffusion text-guided image variation process. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 20): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 10.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
callback (`Callable`, *optional*): | |
A function that calls every `callback_steps` steps during inference. The function is called with the | |
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function is called. If not specified, the callback is called at | |
every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
noise_level (`int`, *optional*, defaults to `0`): | |
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in | |
the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details. | |
image_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated CLIP embeddings to condition the `unet` on. These latents are not used in the denoising | |
process. If you want to provide pre-generated latents, pass them to `__call__` as `latents`. | |
Examples: | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
[`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning | |
a tuple, the first element is a list with the generated images. | |
""" | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
if prompt is None and prompt_embeds is None: | |
prompt = len(image) * [""] if isinstance(image, list) else "" | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt=prompt, | |
image=image, | |
height=height, | |
width=width, | |
callback_steps=callback_steps, | |
noise_level=noise_level, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image_embeds=image_embeds, | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
batch_size = batch_size * num_images_per_prompt | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None) | |
prompt_embeds = self._encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Encoder input image | |
noise_level = torch.tensor([noise_level], device=device) | |
image_embeds = self._encode_image( | |
image=image, | |
device=device, | |
batch_size=batch_size, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
noise_level=noise_level, | |
generator=generator, | |
image_embeds=image_embeds, | |
negative_image_embeds=negative_image_embeds, | |
) | |
# 5. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size=batch_size, | |
num_channels_latents=num_channels_latents, | |
height=height, | |
width=width, | |
dtype=prompt_embeds.dtype, | |
device=device, | |
generator=generator, | |
latents=latents, | |
) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Denoising loop | |
for i, t in enumerate(self.progress_bar(timesteps)): | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
class_labels=image_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
# 9. Post-processing | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, ) | |
return ImagePipelineOutput(images=image) | |