SEED-LLaMA / models /pipeline_stable_unclip_img2img.py
sjzhao's picture
update demo
bd63939
raw
history blame
38.8 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import warnings
from typing import Any, Callable, Dict, List, Optional, Union
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from diffusers.utils.import_utils import is_accelerate_available
from diffusers.image_processor import VaeImageProcessor
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.embeddings import get_timestep_embedding
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import is_accelerate_version, logging, randn_tensor, replace_example_docstring
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from io import BytesIO
>>> from diffusers import StableUnCLIPImg2ImgPipeline
>>> pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(
... "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16
... ) # TODO update model path
>>> pipe = pipe.to("cuda")
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> init_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> init_image = init_image.resize((768, 512))
>>> prompt = "A fantasy landscape, trending on artstation"
>>> images = pipe(prompt, init_image).images
>>> images[0].save("fantasy_landscape.png")
```
"""
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
"""
Pipeline for text-guided image-to-image generation using stable unCLIP.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
feature_extractor ([`CLIPImageProcessor`]):
Feature extractor for image pre-processing before being encoded.
image_encoder ([`CLIPVisionModelWithProjection`]):
CLIP vision model for encoding images.
image_normalizer ([`StableUnCLIPImageNormalizer`]):
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image
embeddings after the noise has been applied.
image_noising_scheduler ([`KarrasDiffusionSchedulers`]):
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined
by the `noise_level`.
tokenizer (`~transformers.CLIPTokenizer`):
A [`~transformers.CLIPTokenizer`)].
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen [`~transformers.CLIPTextModel`] text-encoder.
unet ([`UNet2DConditionModel`]):
A [`UNet2DConditionModel`] to denoise the encoded image latents.
scheduler ([`KarrasDiffusionSchedulers`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
"""
_exclude_from_cpu_offload = ["image_normalizer"]
# image encoding components
feature_extractor: CLIPImageProcessor
image_encoder: CLIPVisionModelWithProjection
# image noising components
image_normalizer: StableUnCLIPImageNormalizer
image_noising_scheduler: KarrasDiffusionSchedulers
# regular denoising components
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModel
unet: UNet2DConditionModel
scheduler: KarrasDiffusionSchedulers
vae: AutoencoderKL
def __init__(
self,
# image encoding components
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModelWithProjection,
# image noising components
image_normalizer: StableUnCLIPImageNormalizer,
image_noising_scheduler: KarrasDiffusionSchedulers,
# regular denoising components
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
# vae
vae: AutoencoderKL,
):
super().__init__()
self.register_modules(
feature_extractor=feature_extractor,
image_encoder=image_encoder,
image_normalizer=image_normalizer,
image_noising_scheduler=image_noising_scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder,
unet=unet,
scheduler=scheduler,
vae=vae,
)
self.vae_scale_factor = 2**(len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs.
Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the
iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.image_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.final_offload_hook = hook
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1:-1])
logger.warning("The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}")
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}.")
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`.")
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def _encode_image(
self,
image,
device,
batch_size,
num_images_per_prompt,
do_classifier_free_guidance,
noise_level,
generator,
image_embeds,
negative_image_embeds,
):
dtype = next(self.image_encoder.parameters()).dtype
if isinstance(image, PIL.Image.Image):
# the image embedding should repeated so it matches the total batch size of the prompt
repeat_by = batch_size
else:
# assume the image input is already properly batched and just needs to be repeated so
# it matches the num_images_per_prompt.
#
# NOTE(will) this is probably missing a few number of side cases. I.e. batched/non-batched
# `image_embeds`. If those happen to be common use cases, let's think harder about
# what the expected dimensions of inputs should be and how we handle the encoding.
repeat_by = num_images_per_prompt
if image_embeds is None:
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(images=image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embeds = self.image_encoder(image).image_embeds
image_embeds = self.noise_image_embeddings(
image_embeds=image_embeds,
noise_level=noise_level,
generator=generator,
)
# duplicate image embeddings for each generation per prompt, using mps friendly method
image_embeds = image_embeds.unsqueeze(1)
bs_embed, seq_len, _ = image_embeds.shape
image_embeds = image_embeds.repeat(1, repeat_by, 1)
image_embeds = image_embeds.view(bs_embed * repeat_by, seq_len, -1)
image_embeds = image_embeds.squeeze(1)
if negative_image_embeds is not None:
negative_image_embeds = self.noise_image_embeddings(
image_embeds=negative_image_embeds,
noise_level=0,
generator=generator,
)
# duplicate negative image embeddings for each generation per prompt, using mps friendly method
negative_image_embeds = negative_image_embeds.unsqueeze(1)
bs_embed, seq_len, _ = negative_image_embeds.shape
negative_image_embeds = negative_image_embeds.repeat(1, repeat_by, 1)
negative_image_embeds = negative_image_embeds.view(bs_embed * repeat_by, seq_len, -1)
negative_image_embeds = negative_image_embeds.squeeze(1)
if do_classifier_free_guidance:
if negative_image_embeds is None:
negative_image_embeds = torch.zeros_like(image_embeds)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
image_embeds = torch.cat([negative_image_embeds, image_embeds])
return image_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
warnings.warn(
"The decode_latents method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor instead",
FutureWarning,
)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
height,
width,
callback_steps,
noise_level,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
image_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (callback_steps is not None and
(not isinstance(callback_steps, int) or callback_steps <= 0)):
raise ValueError(f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}.")
if prompt is not None and prompt_embeds is not None:
raise ValueError("Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two.")
if prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined.")
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
"Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined."
)
if prompt is not None and negative_prompt is not None:
if type(prompt) is not type(negative_prompt):
raise TypeError(f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}.")
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}.")
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
raise ValueError(
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
)
if image is not None and image_embeds is not None:
raise ValueError("Provide either `image` or `image_embeds`. Please make sure to define only one of the two.")
if image is None and image_embeds is None:
raise ValueError(
"Provide either `image` or `image_embeds`. Cannot leave both `image` and `image_embeds` undefined.")
if image is not None:
if (not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list)):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators.")
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings
def noise_image_embeddings(
self,
image_embeds: torch.Tensor,
noise_level: int,
noise: Optional[torch.FloatTensor] = None,
generator: Optional[torch.Generator] = None,
):
"""
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
`noise_level` increases the variance in the final un-noised images.
The noise is applied in two ways:
1. A noise schedule is applied directly to the embeddings.
2. A vector of sinusoidal time embeddings are appended to the output.
In both cases, the amount of noise is controlled by the same `noise_level`.
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
"""
if noise is None:
noise = randn_tensor(image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype)
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)
self.image_normalizer.to(image_embeds.device)
image_embeds = self.image_normalizer.scale(image_embeds)
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)
image_embeds = self.image_normalizer.unscale(image_embeds)
noise_level = get_timestep_embedding(timesteps=noise_level,
embedding_dim=image_embeds.shape[-1],
flip_sin_to_cos=True,
downscale_freq_shift=0)
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
# but we might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
noise_level = noise_level.to(image_embeds.dtype)
image_embeds = torch.cat((image_embeds, noise_level), 1)
return image_embeds
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 10,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
noise_level: int = 0,
image_embeds: Optional[torch.FloatTensor] = None,
negative_image_embeds: Optional[torch.FloatTensor] = None,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, either `prompt_embeds` will be
used or prompt is initialized to `""`.
image (`torch.FloatTensor` or `PIL.Image.Image`):
`Image` or tensor representing an image batch. The image is encoded to its CLIP embedding which the
`unet` is conditioned on. The image is _not_ encoded by the `vae` and then used as the latents in the
denoising process like it is in the standard Stable Diffusion text-guided image variation process.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 20):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 10.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
noise_level (`int`, *optional*, defaults to `0`):
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
the final un-noised images. See [`StableUnCLIPPipeline.noise_image_embeddings`] for more details.
image_embeds (`torch.FloatTensor`, *optional*):
Pre-generated CLIP embeddings to condition the `unet` on. These latents are not used in the denoising
process. If you want to provide pre-generated latents, pass them to `__call__` as `latents`.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
[`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning
a tuple, the first element is a list with the generated images.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
if prompt is None and prompt_embeds is None:
prompt = len(image) * [""] if isinstance(image, list) else ""
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt=prompt,
image=image,
height=height,
width=width,
callback_steps=callback_steps,
noise_level=noise_level,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image_embeds=image_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
batch_size = batch_size * num_images_per_prompt
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None)
prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Encoder input image
noise_level = torch.tensor([noise_level], device=device)
image_embeds = self._encode_image(
image=image,
device=device,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
noise_level=noise_level,
generator=generator,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
)
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size=batch_size,
num_channels_latents=num_channels_latents,
height=height,
width=width,
dtype=prompt_embeds.dtype,
device=device,
generator=generator,
latents=latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
class_labels=image_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# 9. Post-processing
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, )
return ImagePipelineOutput(images=image)