Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import contextlib | |
import logging | |
import os | |
import time | |
import datetime | |
import torch | |
import torch.nn as nn | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from .qformer_causual import BertConfig, BertLMHeadModel | |
from .utils import download_cached_file, get_rank, get_dist_info, get_world_size, main_process, is_dist_avail_and_initialized, is_url | |
from .eva_vit import create_eva_vit_g | |
from .clip_vit import create_clip_vit_L | |
from transformers import BertTokenizer | |
# class Blip2Base(BaseModel): | |
class Blip2Base(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def device(self): | |
return list(self.parameters())[0].device | |
def init_tokenizer(cls, truncation_side="right"): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side) | |
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
return tokenizer | |
def maybe_autocast(self, dtype=torch.float16): | |
# if on cpu, don't use autocast | |
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16 | |
enable_autocast = self.device != torch.device("cpu") | |
if enable_autocast: | |
return torch.cuda.amp.autocast(dtype=dtype) | |
else: | |
return contextlib.nullcontext() | |
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): | |
encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
encoder_config.encoder_width = vision_width | |
# insert cross-attention layer every other block | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = cross_attention_freq | |
encoder_config.query_length = num_query_token | |
Qformer = BertLMHeadModel.from_pretrained("bert-base-uncased", config=encoder_config) | |
query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size)) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
return Qformer, query_tokens | |
def init_vision_encoder(self, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision): | |
assert model_name in [ | |
"eva_clip_g", | |
"eva2_clip_L", | |
"clip_L", | |
], "vit model must be eva_clip_g, eva2_clip_L or clip_L" | |
if model_name == "eva_clip_g": | |
visual_encoder = create_eva_vit_g(img_size, drop_path_rate, use_grad_checkpoint, precision) | |
elif model_name == "clip_L": | |
visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision) | |
ln_vision = LayerNorm(visual_encoder.num_features) | |
self.vit_name = model_name | |
return visual_encoder, ln_vision | |
def load_from_pretrained(self, url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location="cpu") | |
else: | |
raise RuntimeError("checkpoint url or path is invalid") | |
state_dict = checkpoint["model"] | |
msg = self.load_state_dict(state_dict, strict=False) | |
# logging.info("Missing keys {}".format(msg.missing_keys)) | |
logging.info("load checkpoint from %s" % url_or_filename) | |
return msg | |
def get_optimizer_params(self, weight_decay, lr_scale=1): | |
if self.vit_name == "eva_clip_g": | |
vit_num_layers = self.visual_encoder.get_num_layer() | |
lr_scales = list(lr_scale**(vit_num_layers + 1 - i) for i in range(vit_num_layers + 2)) | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
for name, param in self.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(param.shape) == 1 or name.endswith(".bias"): | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
if 'visual_encoder' in name: | |
layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.', '')) | |
group_name = "vit_layer_%d_%s" % (layer_id, group_name) | |
else: | |
layer_id = None | |
if group_name not in parameter_group_names: | |
if layer_id is not None: | |
scale = lr_scales[layer_id] | |
else: | |
scale = 1 | |
parameter_group_names[group_name] = {"weight_decay": this_weight_decay, "params": [], "lr_scale": scale} | |
parameter_group_vars[group_name] = {"weight_decay": this_weight_decay, "params": [], "lr_scale": scale} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
# import json | |
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
optim_params = list(parameter_group_vars.values()) | |
return optim_params | |
else: | |
return super().get_optimizer_params(weight_decay, lr_scale) | |
def _lemmatize(self, answers): | |
def apply(answer): | |
doc = self.lemmatizer(answer) | |
words = [] | |
for token in doc: | |
if token.pos_ in ["NOUN", "VERB"]: | |
words.append(token.lemma_) | |
else: | |
words.append(token.text) | |
answer = " ".join(words) | |
return answer | |
return [apply(answer) for answer in answers] | |
def lemmatizer(self): | |
if self._lemmatizer is None: | |
try: | |
import spacy | |
self._lemmatizer = spacy.load("en_core_web_sm") | |
except ImportError: | |
logging.error(""" | |
Please install spacy and en_core_web_sm model to apply lemmatization. | |
python -m spacy download en_core_web_sm | |
OR | |
import spacy.cli | |
spacy.cli.download("en_core_web_sm") | |
""") | |
exit(1) | |
return self._lemmatizer | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |