Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
from torch.cuda.amp import autocast as autocast | |
from torch.nn import functional as F | |
import numpy as np | |
from functools import partial | |
from einops import rearrange | |
from .blip2 import Blip2Base, disabled_train | |
from .vit import Block | |
from .utils import download_cached_file, is_url | |
class VectorQuantizer2(nn.Module): | |
""" | |
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly | |
avoids costly matrix multiplications and allows for post-hoc remapping of indices. | |
""" | |
# NOTE: due to a bug the beta term was applied to the wrong term. for | |
# backwards compatibility we use the buggy version by default, but you can | |
# specify legacy=False to fix it. | |
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): | |
super().__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.legacy = legacy | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices.") | |
else: | |
self.re_embed = n_e | |
self.sane_index_shape = sane_index_shape | |
def remap_to_used(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
match = (inds[:, :, None] == used[None, None, ...]).long() | |
new = match.argmax(-1) | |
unknown = match.sum(2) < 1 | |
if self.unknown_index == "random": | |
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) | |
else: | |
new[unknown] = self.unknown_index | |
return new.reshape(ishape) | |
def unmap_to_all(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
if self.re_embed > self.used.shape[0]: # extra token | |
inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
return back.reshape(ishape) | |
# def l2norm(self, t): | |
# return F.normalize(t, p = 2, dim = -1) | |
def forward(self, z, temp=None, rescale_logits=False, return_logits=False): | |
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" | |
assert rescale_logits is False, "Only for interface compatible with Gumbel" | |
assert return_logits is False, "Only for interface compatible with Gumbel" | |
# reshape z -> (batch, height, width, channel) and flatten | |
#z = rearrange(z, 'b c h w -> b h w c').contiguous() | |
bz = z.shape[0] | |
z_flattened = z.view(-1, self.e_dim) | |
#print('z_flattened', z_flattened.shape) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ | |
torch.sum(self.embedding.weight**2, dim=1) - 2 * \ | |
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
perplexity = None | |
min_encodings = None | |
# compute loss for embedding | |
if not self.legacy: | |
loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2) | |
else: | |
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
#z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() | |
z_q = z_q.reshape(bz, -1, z_q.shape[-1]) | |
if self.remap is not None: | |
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis | |
min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
if self.sane_index_shape: | |
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) | |
return z_q, loss, min_encoding_indices | |
def get_codebook_entry(self, indices, shape=None): | |
# shape specifying (batch, height, width, channel) | |
if self.remap is not None: | |
indices = indices.reshape(shape[0], -1) # add batch axis | |
indices = self.unmap_to_all(indices) | |
indices = indices.reshape(-1) # flatten again | |
# get quantized latent vectors | |
z_q = self.embedding(indices) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class Blip2QformerQuantizer(Blip2Base): | |
""" | |
BLIP2 first-stage model with Q-former and ViT. | |
Supported model types: | |
- pretrained: pretrained model with vit-g | |
- pretrain_vitL: pretrained model with vit-large | |
- coco: fintuned model on coco | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip2", "pretrain") | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain": "configs/models/blip2/blip2_pretrain.yaml", | |
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml", | |
"coco": "configs/models/blip2/blip2_coco.yaml", | |
} | |
def __init__(self, | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
num_query_token=32, | |
cross_attention_freq=2, | |
embed_dim=256, | |
max_txt_len=32, | |
codebook_embed_dim=32, | |
n_embed=8192, | |
recon_s=True, | |
blocks_for_image=True, | |
decode_depth=4, | |
use_recon_s_for_image=False, | |
use_qformer_image=False, | |
image_features_dim=1024): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint, | |
vit_precision) | |
if freeze_vit: | |
for name, param in self.visual_encoder.named_parameters(): | |
param.requires_grad = False | |
self.visual_encoder = self.visual_encoder.eval() | |
self.visual_encoder.train = disabled_train | |
logging.info("freeze vision encoder") | |
self.ln_vision.weight.requires_grad = False | |
self.ln_vision.bias.requires_grad = False | |
self.codebook_embed_dim = codebook_embed_dim | |
self.n_embed = n_embed | |
self.recon_s = recon_s | |
self.blocks_for_image = blocks_for_image | |
self.use_recon_s_for_image = use_recon_s_for_image | |
self.depth = decode_depth | |
self.image_features_dim = image_features_dim | |
self.use_qformer_image = use_qformer_image | |
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features) | |
self.Qformer.cls = None | |
self.Qformer.bert.embeddings.word_embeddings = None | |
self.Qformer.bert.embeddings.position_embeddings = None | |
for layer in self.Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
for name, param in self.Qformer.named_parameters(): | |
param.requires_grad = False | |
self.query_tokens.requires_grad = False | |
self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False) | |
self.encode_task_layer = nn.Sequential( | |
nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size), | |
nn.Tanh(), | |
nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim) # for quantize | |
) | |
self.decode_task_layer = nn.Sequential( | |
nn.Linear(codebook_embed_dim, codebook_embed_dim), | |
nn.Tanh(), | |
nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size) # for quantize | |
) | |
self.quantize = self.quantize.eval() | |
self.quantize.training = False | |
for name, param in self.named_parameters(): | |
if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name: | |
#print('freeze params', name) | |
param.requires_grad = False | |
if self.recon_s: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size)) | |
self.blocks = nn.ModuleList([ | |
Block(dim=self.Qformer.config.hidden_size, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth) | |
]) | |
if self.blocks_for_image: | |
self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size)) | |
self.blocks_image = nn.ModuleList([ | |
Block(dim=self.Qformer.config.hidden_size, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth) | |
]) | |
if self.use_qformer_image: | |
num_reverse_token = 1 | |
self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size) | |
self.Reverse_Qformer.cls = None | |
self.Reverse_Qformer.bert.embeddings.word_embeddings = None | |
self.Reverse_Qformer.bert.embeddings.position_embeddings = None | |
for layer in self.Reverse_Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim) | |
else: | |
self.image_down = nn.Sequential( | |
nn.Linear(self.Qformer.config.hidden_size, 256, bias=False), | |
nn.ReLU(), | |
nn.Linear(256, 128, bias=False), | |
nn.ReLU(), | |
nn.Linear(128, 32, bias=False), | |
) | |
self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim) | |
def get_codebook_indices(self, image): | |
with torch.no_grad(): | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
query_output_down = self.encode_task_layer(query_output.last_hidden_state) | |
quant, loss_embed, embed_ind = self.quantize(query_output_down) | |
embed_ind = embed_ind.reshape(quant.shape[0], -1) | |
query_output_up = self.decode_task_layer(quant) | |
return embed_ind, query_output_up | |
def get_codebook_entry(self, indices): | |
quant_embedding = self.quantize.get_codebook_entry(indices) | |
# print('quant_embedding_shape: ', quant_embedding.shape) | |
# print(self.decode_task_layer) | |
# exit() | |
query_output_up = self.decode_task_layer(quant_embedding) | |
pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1) | |
query_output_up_pos_image = query_output_up + pos_embed_image | |
for blk in self.blocks_image: | |
query_output_up_pos_image = blk(query_output_up_pos_image) | |
query_output_up = query_output_up_pos_image | |
if self.use_qformer_image: | |
query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device) | |
reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1) | |
reverse_output = self.Reverse_Qformer.bert( | |
query_embeds=reverse_tokens, | |
encoder_hidden_states=query_output_up, | |
encoder_attention_mask=query_atts, | |
return_dict=True, | |
) | |
reverse_output = reverse_output.last_hidden_state | |
reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1) | |
else: | |
reverse_output = self.image_down(query_output_up) | |
reverse_output = reverse_output.reshape(reverse_output.shape[0], -1) | |
reverse_output_proj = self.distill_image_proj(reverse_output) | |
return reverse_output_proj | |
def from_pretrained(cls, pretrained_model_path, **kwargs): | |
vit_model = kwargs.get("vit_model", "eva_clip_g") | |
img_size = kwargs.get("image_size", 224) | |
num_query_token = kwargs.get("num_query_token", 32) | |
cross_attention_freq = kwargs.get("cross_attention_freq", 2) | |
drop_path_rate = kwargs.get("drop_path_rate", 0) | |
use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False) | |
vit_precision = kwargs.get("vit_precision", "fp16") | |
freeze_vit = kwargs.get("freeze_vit", True) | |
max_txt_len = kwargs.get("max_txt_len", 32) | |
model = cls( | |
vit_model=vit_model, | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
freeze_vit=freeze_vit, | |
num_query_token=num_query_token, | |
cross_attention_freq=cross_attention_freq, | |
max_txt_len=max_txt_len, | |
) | |
if pretrained_model_path.startswith('http'): | |
print('start download seed model...') | |
cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True) | |
print(cached_file) | |
ckpt = torch.load(cached_file, map_location="cpu") | |
else: | |
ckpt = torch.load(pretrained_model_path, map_location="cpu") | |
missing, unexcepted = model.load_state_dict(ckpt, strict=False) | |
print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted)) | |
return model |