""" Copyright (c) 2023, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ import logging import torch import torch.distributed as dist import torch.nn as nn from torch.cuda.amp import autocast as autocast from torch.nn import functional as F import numpy as np from functools import partial from einops import rearrange from .blip2 import Blip2Base, disabled_train from .vit import Block from .utils import download_cached_file, is_url class VectorQuantizer2(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices.") else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) # def l2norm(self, t): # return F.normalize(t, p = 2, dim = -1) def forward(self, z, temp=None, rescale_logits=False, return_logits=False): assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" assert rescale_logits is False, "Only for interface compatible with Gumbel" assert return_logits is False, "Only for interface compatible with Gumbel" # reshape z -> (batch, height, width, channel) and flatten #z = rearrange(z, 'b c h w -> b h w c').contiguous() bz = z.shape[0] z_flattened = z.view(-1, self.e_dim) #print('z_flattened', z_flattened.shape) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ torch.sum(self.embedding.weight**2, dim=1) - 2 * \ torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2) else: loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape #z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() z_q = z_q.reshape(bz, -1, z_q.shape[-1]) if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) return z_q, loss, min_encoding_indices def get_codebook_entry(self, indices, shape=None): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class Blip2QformerQuantizer(Blip2Base): """ BLIP2 first-stage model with Q-former and ViT. Supported model types: - pretrained: pretrained model with vit-g - pretrain_vitL: pretrained model with vit-large - coco: fintuned model on coco Usage: >>> from lavis.models import load_model >>> model = load_model("blip2", "pretrain") """ PRETRAINED_MODEL_CONFIG_DICT = { "pretrain": "configs/models/blip2/blip2_pretrain.yaml", "pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml", "coco": "configs/models/blip2/blip2_coco.yaml", } def __init__(self, vit_model="eva_clip_g", img_size=224, drop_path_rate=0, use_grad_checkpoint=False, vit_precision="fp16", freeze_vit=True, num_query_token=32, cross_attention_freq=2, embed_dim=256, max_txt_len=32, codebook_embed_dim=32, n_embed=8192, recon_s=True, blocks_for_image=True, decode_depth=4, use_recon_s_for_image=False, use_qformer_image=False, image_features_dim=1024): super().__init__() self.tokenizer = self.init_tokenizer() self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision) if freeze_vit: for name, param in self.visual_encoder.named_parameters(): param.requires_grad = False self.visual_encoder = self.visual_encoder.eval() self.visual_encoder.train = disabled_train logging.info("freeze vision encoder") self.ln_vision.weight.requires_grad = False self.ln_vision.bias.requires_grad = False self.codebook_embed_dim = codebook_embed_dim self.n_embed = n_embed self.recon_s = recon_s self.blocks_for_image = blocks_for_image self.use_recon_s_for_image = use_recon_s_for_image self.depth = decode_depth self.image_features_dim = image_features_dim self.use_qformer_image = use_qformer_image self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features) self.Qformer.cls = None self.Qformer.bert.embeddings.word_embeddings = None self.Qformer.bert.embeddings.position_embeddings = None for layer in self.Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None for name, param in self.Qformer.named_parameters(): param.requires_grad = False self.query_tokens.requires_grad = False self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False) self.encode_task_layer = nn.Sequential( nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size), nn.Tanh(), nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim) # for quantize ) self.decode_task_layer = nn.Sequential( nn.Linear(codebook_embed_dim, codebook_embed_dim), nn.Tanh(), nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size) # for quantize ) self.quantize = self.quantize.eval() self.quantize.training = False for name, param in self.named_parameters(): if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name: #print('freeze params', name) param.requires_grad = False if self.recon_s: self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size)) self.blocks = nn.ModuleList([ Block(dim=self.Qformer.config.hidden_size, num_heads=12, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth) ]) if self.blocks_for_image: self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size)) self.blocks_image = nn.ModuleList([ Block(dim=self.Qformer.config.hidden_size, num_heads=12, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth) ]) if self.use_qformer_image: num_reverse_token = 1 self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size) self.Reverse_Qformer.cls = None self.Reverse_Qformer.bert.embeddings.word_embeddings = None self.Reverse_Qformer.bert.embeddings.position_embeddings = None for layer in self.Reverse_Qformer.bert.encoder.layer: layer.output = None layer.intermediate = None self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim) else: self.image_down = nn.Sequential( nn.Linear(self.Qformer.config.hidden_size, 256, bias=False), nn.ReLU(), nn.Linear(256, 128, bias=False), nn.ReLU(), nn.Linear(128, 32, bias=False), ) self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim) def get_codebook_indices(self, image): with torch.no_grad(): with self.maybe_autocast(): image_embeds = self.ln_vision(self.visual_encoder(image)) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_output = self.Qformer.bert( query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, ) query_output_down = self.encode_task_layer(query_output.last_hidden_state) quant, loss_embed, embed_ind = self.quantize(query_output_down) embed_ind = embed_ind.reshape(quant.shape[0], -1) query_output_up = self.decode_task_layer(quant) return embed_ind, query_output_up def get_codebook_entry(self, indices): quant_embedding = self.quantize.get_codebook_entry(indices) # print('quant_embedding_shape: ', quant_embedding.shape) # print(self.decode_task_layer) # exit() query_output_up = self.decode_task_layer(quant_embedding) pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1) query_output_up_pos_image = query_output_up + pos_embed_image for blk in self.blocks_image: query_output_up_pos_image = blk(query_output_up_pos_image) query_output_up = query_output_up_pos_image if self.use_qformer_image: query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device) reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1) reverse_output = self.Reverse_Qformer.bert( query_embeds=reverse_tokens, encoder_hidden_states=query_output_up, encoder_attention_mask=query_atts, return_dict=True, ) reverse_output = reverse_output.last_hidden_state reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1) else: reverse_output = self.image_down(query_output_up) reverse_output = reverse_output.reshape(reverse_output.shape[0], -1) reverse_output_proj = self.distill_image_proj(reverse_output) return reverse_output_proj @classmethod def from_pretrained(cls, pretrained_model_path, **kwargs): vit_model = kwargs.get("vit_model", "eva_clip_g") img_size = kwargs.get("image_size", 224) num_query_token = kwargs.get("num_query_token", 32) cross_attention_freq = kwargs.get("cross_attention_freq", 2) drop_path_rate = kwargs.get("drop_path_rate", 0) use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False) vit_precision = kwargs.get("vit_precision", "fp16") freeze_vit = kwargs.get("freeze_vit", True) max_txt_len = kwargs.get("max_txt_len", 32) model = cls( vit_model=vit_model, img_size=img_size, drop_path_rate=drop_path_rate, use_grad_checkpoint=use_grad_checkpoint, vit_precision=vit_precision, freeze_vit=freeze_vit, num_query_token=num_query_token, cross_attention_freq=cross_attention_freq, max_txt_len=max_txt_len, ) if pretrained_model_path.startswith('http'): print('start download seed model...') cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True) print(cached_file) ckpt = torch.load(cached_file, map_location="cpu") else: ckpt = torch.load(pretrained_model_path, map_location="cpu") missing, unexcepted = model.load_state_dict(ckpt, strict=False) print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted)) return model