Spaces:
Sleeping
Sleeping
LucasAguetai
commited on
Commit
•
00837ec
1
Parent(s):
37e2495
fix squeeze issue + load only once pipeline
Browse files- app.py +8 -7
- modeles.py +31 -13
app.py
CHANGED
@@ -4,9 +4,10 @@ from fastapi import FastAPI, UploadFile
|
|
4 |
from typing import Union
|
5 |
import json
|
6 |
import csv
|
7 |
-
from modeles import bert, squeezebert, deberta
|
8 |
from uploadFile import file_to_text
|
9 |
from typing import List
|
|
|
10 |
|
11 |
|
12 |
|
@@ -21,10 +22,10 @@ app.add_middleware(
|
|
21 |
)
|
22 |
|
23 |
|
24 |
-
@app.on_event("startup")
|
25 |
-
async def startup_event():
|
26 |
-
print("start")
|
27 |
|
|
|
|
|
|
|
28 |
|
29 |
@app.get("/")
|
30 |
async def root():
|
@@ -60,7 +61,7 @@ async def create_upload_file(texte: str, model: str):
|
|
60 |
@app.post("/squeezebert/")
|
61 |
async def qasqueezebert(context: str, question: str):
|
62 |
try:
|
63 |
-
squeezebert_answer = squeezebert(context, question)
|
64 |
if squeezebert_answer:
|
65 |
return squeezebert_answer
|
66 |
else:
|
@@ -75,7 +76,7 @@ async def qasqueezebert(context: str, question: str):
|
|
75 |
@app.post("/bert/")
|
76 |
async def qabert(context: str, question: str):
|
77 |
try:
|
78 |
-
bert_answer = bert(context, question)
|
79 |
if bert_answer:
|
80 |
return bert_answer
|
81 |
else:
|
@@ -90,7 +91,7 @@ async def qabert(context: str, question: str):
|
|
90 |
@app.post("/deberta-v2/")
|
91 |
async def qadeberta(context: str, question: str):
|
92 |
try:
|
93 |
-
deberta_answer = deberta(context, question)
|
94 |
if deberta_answer:
|
95 |
return deberta_answer
|
96 |
else:
|
|
|
4 |
from typing import Union
|
5 |
import json
|
6 |
import csv
|
7 |
+
from modeles import bert, squeezebert, deberta, loadSqueeze
|
8 |
from uploadFile import file_to_text
|
9 |
from typing import List
|
10 |
+
from transformers import pipeline
|
11 |
|
12 |
|
13 |
|
|
|
22 |
)
|
23 |
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
+
pipBert = pipeline('question-answering', model="ALOQAS/bert-large-uncased-finetuned-squad-v2", tokenizer="ALOQAS/bert-large-uncased-finetuned-squad-v2")
|
27 |
+
pipDeberta = pipeline('question-answering', model="ALOQAS/deberta-large-finetuned-squad-v2", tokenizer="ALOQAS/deberta-large-finetuned-squad-v2")
|
28 |
+
tokenizer, model = loadSqueeze()
|
29 |
|
30 |
@app.get("/")
|
31 |
async def root():
|
|
|
61 |
@app.post("/squeezebert/")
|
62 |
async def qasqueezebert(context: str, question: str):
|
63 |
try:
|
64 |
+
squeezebert_answer = squeezebert(context, question, model, tokenizer)
|
65 |
if squeezebert_answer:
|
66 |
return squeezebert_answer
|
67 |
else:
|
|
|
76 |
@app.post("/bert/")
|
77 |
async def qabert(context: str, question: str):
|
78 |
try:
|
79 |
+
bert_answer = bert(context, question, pipBert)
|
80 |
if bert_answer:
|
81 |
return bert_answer
|
82 |
else:
|
|
|
91 |
@app.post("/deberta-v2/")
|
92 |
async def qadeberta(context: str, question: str):
|
93 |
try:
|
94 |
+
deberta_answer = deberta(context, question, pipDeberta)
|
95 |
if deberta_answer:
|
96 |
return deberta_answer
|
97 |
else:
|
modeles.py
CHANGED
@@ -1,19 +1,37 @@
|
|
1 |
-
from transformers import
|
|
|
2 |
|
3 |
-
def
|
|
|
|
|
|
|
|
|
|
|
4 |
# Define the specific model and tokenizer for SqueezeBERT
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
def bert(context, question):
|
10 |
-
# Define the specific model and tokenizer for BERT
|
11 |
-
model_name = "ALOQAS/bert-large-uncased-finetuned-squad-v2"
|
12 |
-
pip = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
13 |
return pip(context=context, question=question)
|
14 |
|
15 |
-
def deberta(context, question):
|
16 |
-
# Define the specific model and tokenizer for DeBERTa
|
17 |
-
model_name = "ALOQAS/deberta-large-finetuned-squad-v2"
|
18 |
-
pip = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
19 |
return pip(context=context, question=question)
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
2 |
+
import torch
|
3 |
|
4 |
+
def loadSqueeze():
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("ALOQAS/squeezebert-uncased-finetuned-squad-v2")
|
6 |
+
model = AutoModelForQuestionAnswering.from_pretrained("ALOQAS/squeezebert-uncased-finetuned-squad-v2")
|
7 |
+
return tokenizer, model
|
8 |
+
|
9 |
+
def squeezebert(context, question, model, tokenizer):
|
10 |
# Define the specific model and tokenizer for SqueezeBERT
|
11 |
+
# Tokenize the input question-context pair
|
12 |
+
inputs = tokenizer.encode_plus(question, context, max_length=512, truncation=True, padding=True, return_tensors='pt')
|
13 |
+
|
14 |
+
# Send inputs to the same device as your model
|
15 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
16 |
+
|
17 |
+
with torch.no_grad():
|
18 |
+
# Forward pass, get model outputs
|
19 |
+
outputs = model(**inputs)
|
20 |
+
|
21 |
+
# Extract the start and end positions of the answer in the tokens
|
22 |
+
answer_start_scores, answer_end_scores = outputs.start_logits, outputs.end_logits
|
23 |
+
answer_start_index = torch.argmax(answer_start_scores) # Most likely start of answer
|
24 |
+
answer_end_index = torch.argmax(answer_end_scores) + 1 # Most likely end of answer; +1 for inclusive slicing
|
25 |
+
|
26 |
+
# Convert token indices to the actual answer text
|
27 |
+
answer_tokens = inputs['input_ids'][0, answer_start_index:answer_end_index]
|
28 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
29 |
+
return {"answer": answer, "start": answer_start_index.item(), "end": answer_end_index.item()}
|
30 |
+
|
31 |
+
|
32 |
|
33 |
+
def bert(context, question, pip):
|
|
|
|
|
|
|
34 |
return pip(context=context, question=question)
|
35 |
|
36 |
+
def deberta(context, question, pip):
|
|
|
|
|
|
|
37 |
return pip(context=context, question=question)
|