Spaces:
Sleeping
Sleeping
LucasAguetai
commited on
Commit
•
c37d535
1
Parent(s):
f14f444
add deberta and squeezebert to the fastapi app and the modeles file
Browse files- app.py +30 -2
- modeles.py +39 -4
app.py
CHANGED
@@ -7,7 +7,7 @@ from fastapi import FastAPI, UploadFile, File
|
|
7 |
from typing import Union
|
8 |
import json
|
9 |
import csv
|
10 |
-
from modeles import bert
|
11 |
|
12 |
|
13 |
app = FastAPI()
|
@@ -48,11 +48,25 @@ async def create_upload_file(texte: str, model: str):
|
|
48 |
|
49 |
return {"model": model, "texte": texte}
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
# # Modèle Pydantic pour les requêtes BERT
|
52 |
# class BERTRequest(BaseModel):
|
53 |
# context: str
|
54 |
# question: str
|
55 |
-
|
56 |
@app.post("/bert/")
|
57 |
async def qabert(context: str, question: str):
|
58 |
try:
|
@@ -64,6 +78,20 @@ async def qabert(context: str, question: str):
|
|
64 |
except Exception as e:
|
65 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def extract_data(file: UploadFile) -> Union[str, dict, list]:
|
69 |
if file.filename.endswith(".txt"):
|
|
|
7 |
from typing import Union
|
8 |
import json
|
9 |
import csv
|
10 |
+
from modeles import bert, squeezebert, deberta
|
11 |
|
12 |
|
13 |
app = FastAPI()
|
|
|
48 |
|
49 |
return {"model": model, "texte": texte}
|
50 |
|
51 |
+
# # Modèle Pydantic pour les requêtes SqueezeBERT
|
52 |
+
# class SqueezeBERTRequest(BaseModel):
|
53 |
+
# context: str
|
54 |
+
# question: str
|
55 |
+
@app.post("/squeezebert/")
|
56 |
+
async def qasqueezebert(context: str, question: str):
|
57 |
+
try:
|
58 |
+
squeezebert_answer = squeezebert(context, question)
|
59 |
+
if squeezebert_answer:
|
60 |
+
return squeezebert_answer
|
61 |
+
else:
|
62 |
+
raise HTTPException(status_code=404, detail="No answer found")
|
63 |
+
except Exception as e:
|
64 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
65 |
+
|
66 |
# # Modèle Pydantic pour les requêtes BERT
|
67 |
# class BERTRequest(BaseModel):
|
68 |
# context: str
|
69 |
# question: str
|
|
|
70 |
@app.post("/bert/")
|
71 |
async def qabert(context: str, question: str):
|
72 |
try:
|
|
|
78 |
except Exception as e:
|
79 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
80 |
|
81 |
+
# # Modèle Pydantic pour les requêtes DeBERTa
|
82 |
+
# class DeBERTaRequest(BaseModel):
|
83 |
+
# context: str
|
84 |
+
# question: str
|
85 |
+
@app.post("/deberta-v2/")
|
86 |
+
async def qadeberta(context: str, question: str):
|
87 |
+
try:
|
88 |
+
deberta_answer = deberta(context, question)
|
89 |
+
if deberta_answer:
|
90 |
+
return deberta_answer
|
91 |
+
else:
|
92 |
+
raise HTTPException(status_code=404, detail="No answer found")
|
93 |
+
except Exception as e:
|
94 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
95 |
|
96 |
def extract_data(file: UploadFile) -> Union[str, dict, list]:
|
97 |
if file.filename.endswith(".txt"):
|
modeles.py
CHANGED
@@ -1,6 +1,41 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def bert(context, question):
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def load_and_answer(question, context, model_name):
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
7 |
+
|
8 |
+
# Tokenize the input question-context pair
|
9 |
+
inputs = tokenizer.encode_plus(question, context, max_length=512)
|
10 |
+
|
11 |
+
# Send inputs to the same device as your model
|
12 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
13 |
+
|
14 |
+
with torch.no_grad():
|
15 |
+
# Forward pass, get model outputs
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# Extract the start and end positions of the answer in the tokens
|
19 |
+
answer_start_scores, answer_end_scores = outputs.start_logits, outputs.end_logits
|
20 |
+
answer_start_index = torch.argmax(answer_start_scores) # Most likely start of answer
|
21 |
+
answer_end_index = torch.argmax(answer_end_scores) + 1 # Most likely end of answer; +1 for inclusive slicing
|
22 |
+
|
23 |
+
# Convert token indices to the actual answer text
|
24 |
+
answer_tokens = inputs['input_ids'][0, answer_start_index:answer_end_index]
|
25 |
+
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
26 |
+
return {"answer": answer, "start": answer_start_index.item(), "end": answer_end_index.item()}
|
27 |
+
|
28 |
+
def squeezebert(context, question):
|
29 |
+
# Define the specific model and tokenizer for SqueezeBERT
|
30 |
+
model_name = "ALOQAS/squeezebert-uncased-finetuned-squad-v2"
|
31 |
+
return load_and_answer(question, context, model_name)
|
32 |
|
33 |
def bert(context, question):
|
34 |
+
# Define the specific model and tokenizer for BERT
|
35 |
+
model_name = "ALOQAS/bert-large-uncased-finetuned-squad-v2"
|
36 |
+
return load_and_answer(question, context, model_name)
|
37 |
+
|
38 |
+
def deberta(context, question):
|
39 |
+
# Define the specific model and tokenizer for DeBERTa
|
40 |
+
model_name = "ALOQAS/deberta-large-finetuned-squad-v2"
|
41 |
+
return load_and_answer(question, context, model_name)
|