Spaces:
Build error
Build error
import gradio as gr | |
import numpy as np | |
import soundfile as sf | |
from datetime import datetime | |
from time import time as ttime | |
from my_utils import load_audio | |
from transformers import pipeline | |
from text.cleaner import clean_text | |
from feature_extractor import cnhubert | |
from timeit import default_timer as timer | |
from text import cleaned_text_to_sequence | |
from module.models import SynthesizerTrn | |
import os,re,sys,LangSegment,librosa,pdb,torch,pytz | |
from module.mel_processing import spectrogram_torch | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
if "_CUDA_VISIBLE_DEVICES" in os.environ: | |
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"] | |
tz = pytz.timezone('Asia/Singapore') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def abs_path(dir): | |
global_dir = os.path.dirname(os.path.abspath(sys.argv[0])) | |
return(os.path.join(global_dir, dir)) | |
gpt_path = abs_path("MODELS/33/33.ckpt") | |
sovits_path=abs_path("MODELS/33/33.pth") | |
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base") | |
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large") | |
if not os.path.exists(cnhubert_base_path): | |
cnhubert_base_path = "TencentGameMate/chinese-hubert-base" | |
if not os.path.exists(bert_path): | |
bert_path = "hfl/chinese-roberta-wwm-ext-large" | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
whisper_path = os.environ.get("whisper_path", "pretrained_models/whisper-small") | |
if not os.path.exists(whisper_path): | |
whisper_path = "openai/whisper-small" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=whisper_path, | |
chunk_length_s=30, | |
device=device,) | |
is_half = eval( | |
os.environ.get("is_half", "True" if torch.cuda.is_available() else "False") | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def change_sovits_weights(sovits_path): | |
global vq_model, hps | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
with open("./sweight.txt", "w", encoding="utf-8") as f: | |
f.write(sovits_path) | |
change_sovits_weights(sovits_path) | |
def change_gpt_weights(gpt_path): | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path) | |
change_gpt_weights(gpt_path) | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
dict_language = { | |
("中文1"): "all_zh",#全部按中文识别 | |
("English"): "en",#全部按英文识别#######不变 | |
("日文1"): "all_ja",#全部按日文识别 | |
("中文"): "zh",#按中英混合识别####不变 | |
("日本語"): "ja",#按日英混合识别####不变 | |
("混合"): "auto",#多语种启动切分识别语种 | |
} | |
def splite_en_inf(sentence, language): | |
pattern = re.compile(r'[a-zA-Z ]+') | |
textlist = [] | |
langlist = [] | |
pos = 0 | |
for match in pattern.finditer(sentence): | |
start, end = match.span() | |
if start > pos: | |
textlist.append(sentence[pos:start]) | |
langlist.append(language) | |
textlist.append(sentence[start:end]) | |
langlist.append("en") | |
pos = end | |
if pos < len(sentence): | |
textlist.append(sentence[pos:]) | |
langlist.append(language) | |
# Merge punctuation into previous word | |
for i in range(len(textlist)-1, 0, -1): | |
if re.match(r'^[\W_]+$', textlist[i]): | |
textlist[i-1] += textlist[i] | |
del textlist[i] | |
del langlist[i] | |
# Merge consecutive words with the same language tag | |
i = 0 | |
while i < len(langlist) - 1: | |
if langlist[i] == langlist[i+1]: | |
textlist[i] += textlist[i+1] | |
del textlist[i+1] | |
del langlist[i+1] | |
else: | |
i += 1 | |
return textlist, langlist | |
def clean_text_inf(text, language): | |
formattext = "" | |
language = language.replace("all_","") | |
for tmp in LangSegment.getTexts(text): | |
if language == "ja": | |
if tmp["lang"] == language or tmp["lang"] == "zh": | |
formattext += tmp["text"] + " " | |
continue | |
if tmp["lang"] == language: | |
formattext += tmp["text"] + " " | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
phones, word2ph, norm_text = clean_text(formattext, language) | |
phones = cleaned_text_to_sequence(phones) | |
return phones, word2ph, norm_text | |
dtype=torch.float16 if is_half == True else torch.float32 | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
def nonen_clean_text_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
word2ph_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
phones_list.append(phones) | |
if lang == "zh": | |
word2ph_list.append(word2ph) | |
norm_text_list.append(norm_text) | |
print(word2ph_list) | |
phones = sum(phones_list, []) | |
word2ph = sum(word2ph_list, []) | |
norm_text = ' '.join(norm_text_list) | |
return phones, word2ph, norm_text | |
def nonen_get_bert_inf(text, language): | |
if(language!="auto"): | |
textlist, langlist = splite_en_inf(text, language) | |
else: | |
textlist=[] | |
langlist=[] | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
bert_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
return bert | |
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
def get_cleaned_text_final(text,language): | |
if language in {"en","all_zh","all_ja"}: | |
phones, word2ph, norm_text = clean_text_inf(text, language) | |
elif language in {"zh", "ja","auto"}: | |
phones, word2ph, norm_text = nonen_clean_text_inf(text, language) | |
return phones, word2ph, norm_text | |
def get_bert_final(phones, word2ph, text,language,device): | |
if language == "en": | |
bert = get_bert_inf(phones, word2ph, text, language) | |
elif language in {"zh", "ja","auto"}: | |
bert = nonen_get_bert_inf(text, language) | |
elif language == "all_zh": | |
bert = get_bert_feature(text, word2ph).to(device) | |
else: | |
bert = torch.zeros((1024, len(phones))).to(device) | |
return bert | |
def merge_short_text_in_array(texts, threshold): | |
if (len(texts)) < 2: | |
return texts | |
result = [] | |
text = "" | |
for ele in texts: | |
text += ele | |
if len(text) >= threshold: | |
result.append(text) | |
text = "" | |
if (len(text) > 0): | |
if len(result) == 0: | |
result.append(text) | |
else: | |
result[len(result) - 1] += text | |
return result | |
def tprint(text): | |
now=datetime.now(tz).strftime('%H:%M:%S') | |
print(f'UTC+8 - {now} - ✅{text}') | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=("Do not split"),playback_speed=1.0, volume_scale=1.0): | |
t0 = ttime() | |
startTime=timer() | |
change_sovits_weights(sovits_path) | |
tprint(f'LOADED SoVITS Model: {sovits_path}') | |
change_gpt_weights(gpt_path) | |
tprint(f'LOADED GPT Model: {gpt_path}') | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
text = text.strip("\n") | |
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
print(("实际输入的参考文本:"), prompt_text) | |
print(("实际输入的目标文本:"), text) | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
raise OSError(("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
t1 = ttime() | |
phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language) | |
if (how_to_cut == ("Split into groups of 4 sentences")): | |
text = cut1(text) | |
elif (how_to_cut == ("Split every 50 characters")): | |
text = cut2(text) | |
elif (how_to_cut == ("Split at CN/JP periods (。)")): | |
text = cut3(text) | |
elif (how_to_cut == ("Split at English periods (.)")): | |
text = cut4(text) | |
elif (how_to_cut == ("Split at punctuation marks")): | |
text = cut5(text) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
print(("实际输入的目标文本(切句后):"), text) | |
texts = text.split("\n") | |
texts = merge_short_text_in_array(texts, 5) | |
audio_opt = [] | |
bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype) | |
for text in texts: | |
if (len(text.strip()) == 0): | |
continue | |
if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
print(("实际输入的目标文本(每句):"), text) | |
phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language) | |
bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype) | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t2 = ttime() | |
with torch.no_grad(): | |
# pred_semantic = t2s_model.model.infer( | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=config["inference"]["top_k"], | |
early_stop_num=hz * max_sec, | |
) | |
t3 = ttime() | |
# print(pred_semantic.shape,idx) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze( | |
0 | |
) # .unsqueeze(0)#mq要多unsqueeze一次 | |
refer = get_spepc(hps, ref_wav_path) # .to(device) | |
if is_half == True: | |
refer = refer.half().to(device) | |
else: | |
refer = refer.to(device) | |
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0] | |
audio = ( | |
vq_model.decode( | |
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer | |
) | |
.detach() | |
.cpu() | |
.numpy()[0, 0] | |
) | |
max_audio=np.abs(audio).max() | |
if max_audio>1:audio/=max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
#yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
audio_data = (np.concatenate(audio_opt, 0) * 32768).astype(np.int16) | |
if playback_speed != 1.0: | |
audio_data_float = audio_data.astype(np.float32) / 32768 | |
audio_data_stretched = librosa.effects.time_stretch(audio_data_float, rate=playback_speed) | |
audio_data = (audio_data_stretched * 32768).astype(np.int16) | |
audio_data = (audio_data.astype(np.float32) * volume_scale).astype(np.int16) | |
output_wav = "output_audio.wav" | |
sf.write(output_wav, audio_data, hps.data.sampling_rate) | |
endTime=timer() | |
tprint(f'TTS COMPLETE,{round(endTime-startTime,4)}s') | |
return output_wav | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip("。").split("。")]) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
return "\n".join(["%s" % item for item in inp.strip(".").split(".")]) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
# if not re.search(r'[^\w\s]', inp[-1]): | |
# inp += '。' | |
inp = inp.strip("\n") | |
punds = r'[,.;?!、,。?!;:]' | |
items = re.split(f'({punds})', inp) | |
items = ["".join(group) for group in zip(items[::2], items[1::2])] | |
opt = "\n".join(items) | |
return opt | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split('(\d+)', s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def update_model(choice): | |
global gpt_path, sovits_path | |
model_info = models[choice] | |
gpt_path = abs_path(model_info["gpt_weight"]) | |
sovits_path = abs_path(model_info["sovits_weight"]) | |
model_name = choice | |
tone_info = model_info["tones"]["tone1"] | |
tone_sample_path = abs_path(tone_info["sample"]) | |
tprint(f'SELECT MODEL:{choice}') | |
# 返回默认tone“tone1” | |
return ( | |
tone_info["example_voice_wav"], | |
tone_info["example_voice_wav_words"], | |
model_info["default_language"], | |
model_info["default_language"], | |
model_name, | |
"tone1" , | |
tone_sample_path | |
) | |
def update_tone(model_choice, tone_choice): | |
model_info = models[model_choice] | |
tone_info = model_info["tones"][tone_choice] | |
example_voice_wav = abs_path(tone_info["example_voice_wav"]) | |
example_voice_wav_words = tone_info["example_voice_wav_words"] | |
tone_sample_path = abs_path(tone_info["sample"]) | |
return example_voice_wav, example_voice_wav_words,tone_sample_path | |
def transcribe(voice): | |
time1=timer() | |
tprint('Start transcribe') | |
task="transcribe" | |
if voice is None: | |
print("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
R = pipe(voice, batch_size=8, generate_kwargs={"task": task}, return_timestamps=True,return_language=True) | |
text=R['text'] | |
lang=R['chunks'][0]['language'] | |
if lang=='english': | |
language='English' | |
elif lang =='chinese': | |
language='中文' | |
elif lang=='japanese': | |
language = '日本語' | |
time2=timer() | |
tprint(f'TRANSCRIBE COMPLETE,{round(time2-time1,4)}s') | |
print(f'language:{language},words:{text}') | |
return text,language | |
def clone_voice(user_voice,user_text,user_lang): | |
tprint('Start clone') | |
time1=timer() | |
global gpt_path, sovits_path | |
gpt_path = abs_path("pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt") | |
#tprint(f'Model loaded:{gpt_path}') | |
sovits_path = abs_path("pretrained_models/s2G488k.pth") | |
#tprint(f'Model loaded:{sovits_path}') | |
prompt_text, prompt_language = transcribe(user_voice) | |
output_wav = get_tts_wav( | |
user_voice, | |
prompt_text, | |
prompt_language, | |
user_text, | |
user_lang, | |
how_to_cut="Do not split", | |
playback_speed=1.0, | |
volume_scale=1.0) | |
time2=timer() | |
tprint(f'CLONE COMPLETE,{round(time2-time1,4)}s') | |
return output_wav | |
from info import models | |
models_by_language = { | |
"English": [], | |
"中文": [], | |
"日本語": [] | |
} | |
for model_name, model_info in models.items(): | |
language = model_info["default_language"] | |
models_by_language[language].append((model_name, model_info)) | |
##########GRADIO########### | |
with gr.Blocks(theme='remilia/Ghostly') as app: | |
gr.HTML(''' | |
<h1 style="font-size: 25px;">A TTS GENERATOR</h1> | |
<p style="margin-bottom: 10px; font-size: 100%"> | |
If you like this space, please click the ❤️ at the top of the page..如喜欢,请点一下页面顶部的❤️<br> | |
💡This space is based on the innovative text-to-speech generation solution | |
<a href="https://github.com/RVC-Boss/GPT-SoVITS" target="_blank">GPT-SoVITS</a> . | |
You can visit the repo's github homepage to learn training and inference.<br> | |
本空间基于新式的文字转语音生成方案 <a href="https://github.com/RVC-Boss/GPT-SoVITS" target="_blank">GPT-SoVITS</a> . | |
你可以前往项目的github主页学习如何推理和训练。<br> | |
✏️Generating voice is very slow due to using HuggingFace's free CPU in this space. For faster generation, | |
click the Colab icon below to use this space in Colab, which will significantly improve the speed.<br> | |
由于本空间使用huggingface的免费CPU进行推理,因此速度很慢,如想快速生成, | |
请点击下方的Colab图标,前往Colab使用已获得更快的生成速度。 | |
</p> | |
<a href="https://colab.research.google.com/drive/1fTuPZ4tZsAjS-TrhQWMCb7KRdnU8aF6j#scrollTo=MDtJIbLdLHe9" target="_blank"><img src="https://camo.githubusercontent.com/dd83d4a334eab7ada034c13747d9e2237182826d32e3fda6629740b6e02f18d8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f436f6c61622d4639414230303f7374796c653d666f722d7468652d6261646765266c6f676f3d676f6f676c65636f6c616226636f6c6f723d353235323532" alt="colab"></a> | |
''') | |
default_voice_wav, default_voice_wav_words, default_language, _, default_model_name, _, default_tone_sample_path = update_model("Trump") | |
english_models = [name for name, _ in models_by_language["English"]] | |
chinese_models = [name for name, _ in models_by_language["中文"]] | |
japanese_models = [name for name, _ in models_by_language["日本語"]] | |
with gr.Row(): | |
english_choice = gr.Radio(english_models, label="EN|English Model",value="Trump") | |
chinese_choice = gr.Radio(chinese_models, label="CN|中文模型") | |
japanese_choice = gr.Radio(japanese_models, label="JP|日本語モデル") | |
plsh='Text must match the selected language option to prevent errors, for example, if English is input but Chinese is selected for generation./文字一定要和语言选项匹配,不然要报错,比如输入的是英文,生成语言选中文' | |
with gr.Row(): | |
model_name = gr.Textbox(label="Seleted Model/已选模型", value=default_model_name, scale=1) | |
text = gr.Textbox(label="Input some text for voice generation/输入想要生成语音的文字", lines=5,scale=8, | |
placeholder=plsh) | |
with gr.Row(): | |
tone_select = gr.Radio( | |
label="Select Tone/选择语气", | |
choices=["tone1","tone2","tone3"], | |
value="tone1", | |
info='Tone influences the emotional expression ',scale=1) | |
tone_sample=gr.Audio(label="🔊Preview tone/试听语气 ", scale=3) | |
with gr.Row(): | |
text_language = gr.Radio( | |
label="Select language for input text/输入的文字对应语言", | |
choices=["中文","English","日本語"], | |
value=default_language, | |
info='Input text and language must match.',scale=2, | |
) | |
how_to_cut = gr.Dropdown( | |
label=("How to split?"), | |
choices=[("Do not split"), ("Split into groups of 4 sentences"), ("Split every 50 characters"), | |
("Split at CN/JP periods (。)"), ("Split at English periods (.)"), ("Split at punctuation marks"), ], | |
value=("Split into groups of 4 sentences"), | |
interactive=True, | |
info='A suitable splitting method can achieve better generation results',scale=3 | |
) | |
with gr.Accordion(label="prpt voice", open=False,visible=False): | |
with gr.Row(visible=True): | |
inp_ref = gr.Audio(label="Reference audio", type="filepath", value=default_voice_wav, scale=3) | |
prompt_text = gr.Textbox(label="Reference text", value=default_voice_wav_words, scale=3) | |
prompt_language = gr.Dropdown(label="Language of the reference audio", choices=["中文", "English", "日本語"], value=default_language, scale=1,interactive=False) | |
with gr.Accordion(label="Additional generation options/附加生成选项", open=False): | |
volume = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.01, label='Volume') | |
speed = gr.Slider(minimum=0.5, maximum=1.5, value=1, step=0.05, label='Speed') | |
with gr.Row(): | |
main_button = gr.Button("✨Generate Voice", variant="primary", scale=1) | |
output = gr.Audio(label="💾Download it by clicking ⬇️", scale=3) | |
#info = gr.Textbox(label="INFO", visible=True, readonly=True, scale=1) | |
gr.HTML('''<br><br> | |
<h1 style="font-size: 25px;">Clone custom Voice/克隆自定义声音</h1> | |
<p style="margin-bottom: 10px; font-size: 100%">Need 3~10s audio.This involves voice-to-text conversion followed by text-to-voice conversion, so it takes longer time<br> | |
需要3~10秒语音,这个会涉及语音转文字,之后再转语音,所以耗时比较久 | |
</p>''') | |
with gr.Row(): | |
user_voice = gr.Audio(sources=["microphone", "upload"],type="filepath", label="(3~10s)Upload or Record audio/上传或录制声音",scale=3) | |
user_lang = gr.Dropdown(label="Language/生成语言", choices=["中文", "English", "日本語"],scale=1) | |
user_text= gr.Textbox(label="Text for generation/输入想要生成语音的文字", lines=5,scale=5, | |
placeholder=plsh) | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 100%"> | |
🚨Custom sounds must be fully displayed before clicking the clone button; otherwise, an error will be reported.<br> | |
一定要上面显示出自定义声音,再点击clone按钮,不然100%会报错<br> | |
💽Recording requires microphone permissions to be enabled in your browser..录音请确保开启浏览器录音权限 | |
</p>''') | |
user_button = gr.Button("✨Clone Voice", variant="primary") | |
user_output = gr.Audio(label="💾Output wave file,Download it by clicking ⬇️") | |
gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''') | |
english_choice.change(update_model, inputs=[english_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample]) | |
chinese_choice.change(update_model, inputs=[chinese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample]) | |
japanese_choice.change(update_model, inputs=[japanese_choice], outputs=[inp_ref, prompt_text, prompt_language, text_language, model_name, tone_select, tone_sample]) | |
tone_select.change(update_tone, inputs=[model_name, tone_select], outputs=[inp_ref, prompt_text, tone_sample]) | |
main_button.click( | |
get_tts_wav, | |
inputs=[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut,speed,volume], | |
outputs=[output]) | |
user_button.click( | |
clone_voice, | |
inputs=[user_voice,user_text,user_lang], | |
outputs=[user_output]) | |
app.launch(share=True) |