Spaces:
Build error
Build error
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py | |
import copy | |
import numbers | |
from functools import partial | |
from typing import Any | |
from typing import Callable | |
from typing import List | |
from typing import Optional | |
from typing import Tuple | |
from typing import Union | |
import torch | |
from AR.modules.activation_onnx import MultiheadAttention | |
from AR.modules.scaling import BalancedDoubleSwish | |
from torch import nn | |
from torch import Tensor | |
from torch.nn import functional as F | |
_shape_t = Union[int, List[int], torch.Size] | |
class LayerNorm(nn.Module): | |
__constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
normalized_shape: Tuple[int, ...] | |
eps: float | |
elementwise_affine: bool | |
def __init__( | |
self, | |
normalized_shape: _shape_t, | |
eps: float = 1e-5, | |
elementwise_affine: bool = True, | |
device=None, | |
dtype=None, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(LayerNorm, self).__init__() | |
if isinstance(normalized_shape, numbers.Integral): | |
# mypy error: incompatible types in assignment | |
normalized_shape = (normalized_shape,) # type: ignore[assignment] | |
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] | |
self.eps = eps | |
self.elementwise_affine = elementwise_affine | |
if self.elementwise_affine: | |
self.weight = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
self.bias = nn.Parameter( | |
torch.empty(self.normalized_shape, **factory_kwargs) | |
) | |
else: | |
self.register_parameter("weight", None) | |
self.register_parameter("bias", None) | |
self.reset_parameters() | |
def reset_parameters(self) -> None: | |
if self.elementwise_affine: | |
nn.init.ones_(self.weight) | |
nn.init.zeros_(self.bias) | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
return ( | |
F.layer_norm( | |
input, | |
self.normalized_shape, | |
self.weight, | |
self.bias, | |
self.eps, | |
), | |
embedding, | |
) | |
assert embedding is None | |
return F.layer_norm( | |
input, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
def extra_repr(self) -> str: | |
return ( | |
"{normalized_shape}, eps={eps}, " | |
"elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
) | |
class IdentityNorm(nn.Module): | |
def __init__( | |
self, | |
d_model: int, | |
eps: float = 1e-5, | |
device=None, | |
dtype=None, | |
) -> None: | |
super(IdentityNorm, self).__init__() | |
def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
if isinstance(input, tuple): | |
return input | |
assert embedding is None | |
return input | |
class TransformerEncoder(nn.Module): | |
r"""TransformerEncoder is a stack of N encoder layers. Users can build the | |
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
Args: | |
encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
num_layers: the number of sub-encoder-layers in the encoder (required). | |
norm: the layer normalization component (optional). | |
enable_nested_tensor: if True, input will automatically convert to nested tensor | |
(and convert back on output). This will improve the overall performance of | |
TransformerEncoder when padding rate is high. Default: ``True`` (enabled). | |
Examples:: | |
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) | |
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) | |
>>> src = torch.rand(10, 32, 512) | |
>>> out = transformer_encoder(src) | |
""" | |
__constants__ = ["norm"] | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward( | |
self, | |
src: Tensor, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
return_layer_states: bool = False, | |
cache=None, | |
) -> Tensor: | |
output = src | |
for mod in self.layers: | |
output = mod( | |
output, | |
src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, | |
cache=cache, | |
) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerEncoderLayer(nn.Module): | |
__constants__ = ["batch_first", "norm_first"] | |
def __init__( | |
self, | |
d_model: int, | |
nhead: int, | |
dim_feedforward: int = 2048, | |
dropout: float = 0.1, | |
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
batch_first: bool = False, | |
norm_first: bool = False, | |
device=None, | |
dtype=None, | |
linear1_self_attention_cls: nn.Module = nn.Linear, | |
linear2_self_attention_cls: nn.Module = nn.Linear, | |
linear1_feedforward_cls: nn.Module = nn.Linear, | |
linear2_feedforward_cls: nn.Module = nn.Linear, | |
layer_norm_cls: nn.Module = LayerNorm, | |
layer_norm_eps: float = 1e-5, | |
adaptive_layer_norm=False, | |
) -> None: | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super(TransformerEncoderLayer, self).__init__() | |
self.self_attn = MultiheadAttention( | |
d_model, # 512 16 | |
nhead, | |
dropout=dropout, | |
batch_first=batch_first, | |
linear1_cls=linear1_self_attention_cls, | |
linear2_cls=linear2_self_attention_cls, | |
**factory_kwargs, | |
) | |
self.linear1 = linear1_feedforward_cls( | |
d_model, dim_feedforward, **factory_kwargs | |
) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = linear2_feedforward_cls( | |
dim_feedforward, d_model, **factory_kwargs | |
) | |
self.norm_first = norm_first | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
if isinstance(activation, str): | |
activation = _get_activation_fn(activation) | |
elif isinstance(activation, partial): | |
activation = activation(d_model) | |
elif activation == BalancedDoubleSwish: | |
activation = BalancedDoubleSwish(d_model) | |
self.activation = activation | |
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
if layer_norm_cls == IdentityNorm: | |
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs) | |
else: | |
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
if adaptive_layer_norm: | |
self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
else: | |
self.norm1 = norm1 | |
self.norm2 = norm2 | |
def __setstate__(self, state): | |
super(TransformerEncoderLayer, self).__setstate__(state) | |
if not hasattr(self, "activation"): | |
self.activation = F.relu | |
def forward( | |
self, | |
src: Tensor, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
cache=None, | |
) -> Tensor: | |
x = src | |
stage_embedding = None | |
x = self.norm1( | |
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache), | |
stage_embedding, | |
) | |
x = self.norm2(x + self._ff_block(x), stage_embedding) | |
return x | |
def _sa_block( | |
self, | |
x: Tensor, | |
attn_mask: Optional[Tensor], | |
key_padding_mask: Optional[Tensor], | |
cache=None, | |
) -> Tensor: | |
x = self.self_attn( | |
x, | |
x, | |
x, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask, | |
need_weights=False, | |
cache=cache, | |
) | |
return self.dropout1(x) | |
def _ff_block(self, x: Tensor) -> Tensor: | |
x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
return self.dropout2(x) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if isinstance(input, tuple): | |
input, embedding = input | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return (weight * self.norm(input) + bias, embedding) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |