Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,48 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import pipeline
|
3 |
-
|
4 |
-
|
5 |
-
from huggingface_hub import login
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
import os
|
8 |
-
|
9 |
-
# Load the environment variables from the .env file
|
10 |
-
load_dotenv()
|
11 |
-
|
12 |
-
# Retrieve the token from the .env file
|
13 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
-
|
15 |
-
# Log in using the retrieved token
|
16 |
-
login(token=huggingface_token)
|
17 |
-
|
18 |
-
# Available models for summarization
|
19 |
-
models = {
|
20 |
-
"T5": "Sandaruth/T5_Full_Fine_Tuned_FINDSUM",
|
21 |
-
"BERT": "bert-base-uncased", # Note: BERT isn't designed for summarization; you can change this
|
22 |
-
"LongT5": "google/long-t5-local-base",
|
23 |
-
"Pegasus": "google/pegasus-xsum"
|
24 |
-
}
|
25 |
-
|
26 |
-
# Streamlit app layout
|
27 |
-
st.title("Summarization with Multiple Models")
|
28 |
-
|
29 |
-
# Dropdown to select the model
|
30 |
-
model_choice = st.selectbox("Select a model for summarization", models.keys())
|
31 |
-
|
32 |
-
# Text area for input
|
33 |
-
input_text = st.text_area("Enter the long text you want to summarize", height=300)
|
34 |
-
|
35 |
-
# Button to generate the summary
|
36 |
-
if st.button("Generate Summary"):
|
37 |
-
# Load the selected model and summarizer pipeline
|
38 |
-
summarizer = pipeline("summarization", model=models[model_choice])
|
39 |
-
|
40 |
-
if input_text:
|
41 |
-
# Generate the summary
|
42 |
-
summary = summarizer(input_text,
|
43 |
-
|
44 |
-
# Display the summary
|
45 |
-
st.subheader("Generated Summary")
|
46 |
-
st.write(summary[0]['summary_text'])
|
47 |
-
else:
|
48 |
-
st.write("Please enter text to summarize!")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
|
5 |
+
from huggingface_hub import login
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the environment variables from the .env file
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
# Retrieve the token from the .env file
|
13 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
+
|
15 |
+
# Log in using the retrieved token
|
16 |
+
login(token=huggingface_token)
|
17 |
+
|
18 |
+
# Available models for summarization
|
19 |
+
models = {
|
20 |
+
"T5": "Sandaruth/T5_Full_Fine_Tuned_FINDSUM",
|
21 |
+
"BERT": "bert-base-uncased", # Note: BERT isn't designed for summarization; you can change this
|
22 |
+
"LongT5": "google/long-t5-local-base",
|
23 |
+
"Pegasus": "google/pegasus-xsum"
|
24 |
+
}
|
25 |
+
|
26 |
+
# Streamlit app layout
|
27 |
+
st.title("Summarization with Multiple Models")
|
28 |
+
|
29 |
+
# Dropdown to select the model
|
30 |
+
model_choice = st.selectbox("Select a model for summarization", models.keys())
|
31 |
+
|
32 |
+
# Text area for input
|
33 |
+
input_text = st.text_area("Enter the long text you want to summarize", height=300)
|
34 |
+
|
35 |
+
# Button to generate the summary
|
36 |
+
if st.button("Generate Summary"):
|
37 |
+
# Load the selected model and summarizer pipeline
|
38 |
+
summarizer = pipeline("summarization", model=models[model_choice])
|
39 |
+
|
40 |
+
if input_text:
|
41 |
+
# Generate the summary
|
42 |
+
summary = summarizer(input_text, do_sample=False)
|
43 |
+
|
44 |
+
# Display the summary
|
45 |
+
st.subheader("Generated Summary")
|
46 |
+
st.write(summary[0]['summary_text'])
|
47 |
+
else:
|
48 |
+
st.write("Please enter text to summarize!")
|