Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
3 |
import torch
|
4 |
from threading import Thread
|
5 |
-
import transformers
|
6 |
|
7 |
MODEL_ID = "HODACHI/Llama-3.1-8B-EZO-1.1-it"
|
8 |
DTYPE = torch.bfloat16
|
9 |
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
11 |
-
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
MODEL_ID,
|
14 |
-
torch_dtype=
|
15 |
-
device_map="auto",
|
16 |
-
low_cpu_mem_usage=True,
|
17 |
)
|
18 |
|
19 |
-
|
20 |
-
"text-generation",
|
21 |
-
model=model,
|
22 |
-
tokenizer=tokenizer,
|
23 |
-
device_map="auto",
|
24 |
)
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
chat = []
|
34 |
chat.append({"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、原則日本語で回答してください。"})
|
35 |
for user, assistant in history:
|
36 |
chat.append({"role": "user", "content": user})
|
37 |
chat.append({"role": "assistant", "content": assistant})
|
38 |
chat.append({"role": "user", "content": message})
|
39 |
-
|
40 |
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
41 |
-
#inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
42 |
-
|
43 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
44 |
|
45 |
-
|
46 |
-
# input_ids=inputs,
|
47 |
-
# max_new_tokens=max_tokens,
|
48 |
-
# temperature=temperature,
|
49 |
-
# top_p=top_p,
|
50 |
-
# do_sample=True,
|
51 |
-
# streamer=streamer,
|
52 |
-
#)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
#for new_text in streamer:
|
59 |
-
# response += new_text
|
60 |
-
# yield response
|
61 |
-
outputs = pipeline(
|
62 |
-
prompt,
|
63 |
-
max_new_tokens=40, # 生成する最大トークン数
|
64 |
-
do_sample=True, # サンプリングを有効にして多様な出力を得る
|
65 |
-
temperature=0.7, # 生成の多様性を調整(高いほど多様、低いほど決定的)
|
66 |
-
top_p=0.95, # 累積確率に基づくサンプリングの閾値
|
67 |
-
)
|
68 |
-
|
69 |
-
response = outputs[0]["generated_text"]
|
70 |
-
return response
|
71 |
|
72 |
demo = gr.ChatInterface(
|
73 |
respond,
|
74 |
additional_inputs=[
|
75 |
gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"),
|
76 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
77 |
-
gr.Slider(
|
78 |
-
minimum=0.1,
|
79 |
-
maximum=1.0,
|
80 |
-
value=0.95,
|
81 |
-
step=0.05,
|
82 |
-
label="Top-p (nucleus sampling)",
|
83 |
-
),
|
84 |
],
|
85 |
)
|
86 |
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
|
3 |
import torch
|
4 |
from threading import Thread
|
|
|
5 |
|
6 |
MODEL_ID = "HODACHI/Llama-3.1-8B-EZO-1.1-it"
|
7 |
DTYPE = torch.bfloat16
|
8 |
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
MODEL_ID,
|
12 |
+
torch_dtype=DTYPE,
|
13 |
+
device_map="auto",
|
14 |
+
low_cpu_mem_usage=True,
|
15 |
)
|
16 |
|
17 |
+
pipe = pipeline(
|
18 |
+
"text-generation",
|
19 |
+
model=model,
|
20 |
+
tokenizer=tokenizer,
|
21 |
+
device_map="auto",
|
22 |
)
|
23 |
|
24 |
+
def generate_text(prompt, max_new_tokens, temperature, top_p):
|
25 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
26 |
+
generation_kwargs = dict(
|
27 |
+
max_new_tokens=max_new_tokens,
|
28 |
+
temperature=temperature,
|
29 |
+
top_p=top_p,
|
30 |
+
do_sample=True,
|
31 |
+
streamer=streamer,
|
32 |
+
)
|
33 |
+
|
34 |
+
thread = Thread(target=pipe, kwargs=dict(text_inputs=prompt, **generation_kwargs))
|
35 |
+
thread.start()
|
36 |
+
|
37 |
+
return streamer
|
38 |
+
|
39 |
+
def respond(message, history, max_tokens, temperature, top_p):
|
40 |
chat = []
|
41 |
chat.append({"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、原則日本語で回答してください。"})
|
42 |
for user, assistant in history:
|
43 |
chat.append({"role": "user", "content": user})
|
44 |
chat.append({"role": "assistant", "content": assistant})
|
45 |
chat.append({"role": "user", "content": message})
|
|
|
46 |
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
47 |
|
48 |
+
streamer = generate_text(prompt, max_tokens, temperature, top_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
response = ""
|
51 |
+
for new_text in streamer:
|
52 |
+
response += new_text
|
53 |
+
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
demo = gr.ChatInterface(
|
56 |
respond,
|
57 |
additional_inputs=[
|
58 |
gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"),
|
59 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
60 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
],
|
62 |
)
|
63 |
|