Spaces:
Runtime error
Runtime error
File size: 9,641 Bytes
fb6c2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import argparse
import logging
import os
import os.path as osp
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from basicsr.utils import (get_env_info, get_root_logger, get_time_str,
img2tensor, scandir, tensor2img)
from basicsr.utils.options import copy_opt_file, dict2str
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from dataset_coco import dataset_coco, dataset_coco_mask_color_sig
from dist_util import get_bare_model, init_dist, master_only
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
@master_only
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
os.makedirs(osp.join(experiments_root, 'models'))
os.makedirs(osp.join(experiments_root, 'training_states'))
os.makedirs(osp.join(experiments_root, 'visualization'))
def load_resume_state(opt):
resume_state_path = None
if opt.auto_resume:
state_path = osp.join('experiments', opt.name, 'training_states')
if osp.isdir(state_path):
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
if len(states) != 0:
states = [float(v.split('.state')[0]) for v in states]
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
opt.resume_state_path = resume_state_path
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
return resume_state
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="A black Honda motorcycle parked in front of a garage"
)
parser.add_argument(
"--neg_prompt",
type=str,
default="ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face"
)
parser.add_argument(
"--path_cond",
type=str,
default="examples/seg/motor.png"
)
parser.add_argument(
"--bsize",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--epochs",
type=int,
default=10000,
help="the prompt to render"
)
parser.add_argument(
"--device",
type=str,
default="cuda"
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--use_shuffle",
type=bool,
default=True,
help="the prompt to render"
)
parser.add_argument(
"--dpm_solver",
action='store_true',
help="use dpm_solver sampling",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--auto_resume",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/sd-v1-4.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--ckpt_ad",
type=str,
default="models/t2iadapter_seg_sd14v1.pth"
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/test_mask.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--print_fq",
type=int,
default=100,
help="path to config which constructs model",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_samples",
type=int,
default=10,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--gpus",
default=[0,1,2,3],
help="gpu idx",
)
parser.add_argument(
'--local_rank',
default=-1,
type=int,
help='node rank for distributed training'
)
parser.add_argument(
'--launcher',
default='pytorch',
type=str,
help='node rank for distributed training'
)
opt = parser.parse_args()
if __name__ == '__main__':
# seed_everything(42)
config = OmegaConf.load(f"{opt.config}")
opt.name = config['name']
device=opt.device
# stable diffusion
model = load_model_from_config(config, f"{opt.ckpt}").to(device)
# Adaptor
model_ad = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
model_ad.load_state_dict(torch.load(opt.ckpt_ad))
experiments_root = osp.join('experiments', opt.name)
# resume state
resume_state = load_resume_state(opt)
if resume_state is None:
mkdir_and_rename(experiments_root)
# copy the yml file to the experiment root
copy_opt_file(opt.config, experiments_root)
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
for v_idx in range(opt.n_samples):
with torch.no_grad():
if opt.dpm_solver:
sampler = DPMSolverSampler(model)
elif opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
c = model.get_learned_conditioning([opt.prompt])
# costumer input
mask = cv2.imread(opt.path_cond)
mask = cv2.resize(mask,(512,512))
mask = img2tensor(mask, bgr2rgb=True, float32=True)/255.
mask = mask.unsqueeze(0)
im_mask = tensor2img(mask)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'mask_idx%04d.png'%(v_idx)), im_mask)
features_adapter = model_ad(mask.to(device))
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, intermediates = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=model.get_learned_conditioning([opt.neg_prompt]),
eta=opt.ddim_eta,
x_T=None,
features_adapter1=features_adapter,
mode = 'mask'
)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
for id_sample, x_sample in enumerate(x_samples_ddim):
x_sample = 255.*x_sample
img = x_sample.astype(np.uint8)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'sample_idx%04d_s%04d.png'%(v_idx, id_sample)), img[:,:,::-1]) |