Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import math | |
from torch.utils.checkpoint import checkpoint | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, CLIPModel | |
import open_clip | |
import re | |
from ldm.util import default, count_params | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class IdentityEncoder(AbstractEncoder): | |
def encode(self, x): | |
return x | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
c = self.embedding(c) | |
return c | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
freeze=True, layer="last"): # clip-vit-base-patch32 | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPModel.from_pretrained(version).text_model | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer != 'last') | |
if self.layer == 'penultimate': | |
z = outputs.hidden_states[-2] | |
z = self.transformer.final_layer_norm(z) | |
else: | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenOpenCLIPEmbedder(AbstractEncoder): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
LAYERS = [ | |
#"pooled", | |
"last", | |
"penultimate" | |
] | |
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, | |
freeze=True, layer="last"): | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) | |
del model.visual | |
self.model = model | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
return z | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_final(x) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - self.layer_idx: | |
break | |
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPT5Encoder(AbstractEncoder): | |
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", | |
clip_max_length=77, t5_max_length=77): | |
super().__init__() | |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) | |
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) | |
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " | |
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") | |
def encode(self, text): | |
return self(text) | |
def forward(self, text): | |
clip_z = self.clip_encoder.encode(text) | |
t5_z = self.t5_encoder.encode(text) | |
return [clip_z, t5_z] | |
# code from sd-webui | |
re_attention = re.compile(r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", re.X) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
\( - literal character '(' | |
\[ - literal character '[' | |
\) - literal character ')' | |
\] - literal character ']' | |
\\ - literal character '\' | |
anything else - just text | |
>>> parse_prompt_attention('normal text') | |
[['normal text', 1.0]] | |
>>> parse_prompt_attention('an (important) word') | |
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] | |
>>> parse_prompt_attention('(unbalanced') | |
[['unbalanced', 1.1]] | |
>>> parse_prompt_attention('\(literal\]') | |
[['(literal]', 1.0]] | |
>>> parse_prompt_attention('(unnecessary)(parens)') | |
[['unnecessaryparens', 1.1]] | |
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') | |
[['a ', 1.0], | |
['house', 1.5730000000000004], | |
[' ', 1.1], | |
['on', 1.0], | |
[' a ', 1.1], | |
['hill', 0.55], | |
[', sun, ', 1.1], | |
['sky', 1.4641000000000006], | |
['.', 1.1]] | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
res.append([text, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
class WebUIFrozenCLIPEmebedder(AbstractEncoder): | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", freeze=True, layer="penultimate"): | |
super(WebUIFrozenCLIPEmebedder, self).__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPModel.from_pretrained(version).text_model | |
self.device = device | |
self.layer = layer | |
if freeze: | |
self.freeze() | |
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0] | |
self.comma_padding_backtrack = 20 | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def tokenize(self, texts): | |
tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"] | |
return tokenized | |
def encode_with_transformers(self, tokens): | |
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer!='last') | |
if self.layer == 'penultimate': | |
z = outputs.hidden_states[-2] | |
z = self.transformer.final_layer_norm(z) | |
else: | |
z = outputs.last_hidden_state | |
return z | |
def tokenize_line(self, line): | |
parsed = parse_prompt_attention(line) | |
# print(parsed) | |
tokenized = self.tokenize([text for text, _ in parsed]) | |
remade_tokens = [] | |
multipliers = [] | |
last_comma = -1 | |
for tokens, (text, weight) in zip(tokenized, parsed): | |
i = 0 | |
while i < len(tokens): | |
token = tokens[i] | |
if token == self.comma_token: | |
last_comma = len(remade_tokens) | |
elif self.comma_padding_backtrack != 0 and max(len(remade_tokens), | |
1) % 75 == 0 and last_comma != -1 and len( | |
remade_tokens) - last_comma <= self.comma_padding_backtrack: | |
last_comma += 1 | |
reloc_tokens = remade_tokens[last_comma:] | |
reloc_mults = multipliers[last_comma:] | |
remade_tokens = remade_tokens[:last_comma] | |
length = len(remade_tokens) | |
rem = int(math.ceil(length / 75)) * 75 - length | |
remade_tokens += [self.tokenizer.eos_token_id] * rem + reloc_tokens | |
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults | |
remade_tokens.append(token) | |
multipliers.append(weight) | |
i += 1 | |
token_count = len(remade_tokens) | |
prompt_target_length = math.ceil(max(token_count, 1) / 75) * 75 | |
tokens_to_add = prompt_target_length - len(remade_tokens) | |
remade_tokens = remade_tokens + [self.tokenizer.eos_token_id] * tokens_to_add | |
multipliers = multipliers + [1.0] * tokens_to_add | |
return remade_tokens, multipliers, token_count | |
def process_text(self, texts): | |
remade_batch_tokens = [] | |
token_count = 0 | |
cache = {} | |
batch_multipliers = [] | |
for line in texts: | |
if line in cache: | |
remade_tokens, multipliers = cache[line] | |
else: | |
remade_tokens, multipliers, current_token_count = self.tokenize_line(line) | |
token_count = max(current_token_count, token_count) | |
cache[line] = (remade_tokens, multipliers) | |
remade_batch_tokens.append(remade_tokens) | |
batch_multipliers.append(multipliers) | |
return batch_multipliers, remade_batch_tokens, token_count | |
def process_tokens(self, remade_batch_tokens, batch_multipliers): | |
remade_batch_tokens = [[self.tokenizer.bos_token_id] + x[:75] + [self.tokenizer.eos_token_id] for x in remade_batch_tokens] | |
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers] | |
tokens = torch.asarray(remade_batch_tokens).to(self.device) | |
z = self.encode_with_transformers(tokens) | |
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise | |
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers] | |
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(self.device) | |
original_mean = z.mean() | |
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) | |
new_mean = z.mean() | |
z *= original_mean / new_mean | |
return z | |
def forward(self, text): | |
batch_multipliers, remade_batch_tokens, token_count = self.process_text(text) | |
z = None | |
i = 0 | |
while max(map(len, remade_batch_tokens)) != 0: | |
rem_tokens = [x[75:] for x in remade_batch_tokens] | |
rem_multipliers = [x[75:] for x in batch_multipliers] | |
tokens = [] | |
multipliers = [] | |
for j in range(len(remade_batch_tokens)): | |
if len(remade_batch_tokens[j]) > 0: | |
tokens.append(remade_batch_tokens[j][:75]) | |
multipliers.append(batch_multipliers[j][:75]) | |
else: | |
tokens.append([self.tokenizer.eos_token_id] * 75) | |
multipliers.append([1.0] * 75) | |
z1 = self.process_tokens(tokens, multipliers) | |
z = z1 if z is None else torch.cat((z, z1), axis=-2) | |
remade_batch_tokens = rem_tokens | |
batch_multipliers = rem_multipliers | |
i += 1 | |
return z | |
def encode(self, text): | |
return self(text) | |
if __name__ == "__main__": | |
model = FrozenCLIPEmbedder() | |
count_params(model, verbose=True) | |