File size: 1,372 Bytes
9420338
 
68c1b6b
9420338
68c1b6b
 
469542a
 
9420338
 
 
 
469542a
9420338
68c1b6b
 
 
 
 
 
6541245
68c1b6b
 
 
 
 
 
 
 
 
 
 
469542a
 
 
 
 
 
 
 
 
 
 
68c1b6b
9420338
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import streamlit as st
from pprint import pprint
import streamlit.components.v1 as components
from widgets import *
from pyecharts.charts import Bar
from pyecharts import options as opts
from lrt_instance import *


# [![github](https://img.kookapp.cn/assets/2022-09/1w4G0FIWGK00w00w.png)](https://github.com/Mondkuchen/idp_LiteratureResearch_Tool)

# sidebar content
platforms, number_papers,start_year,end_year,k = render_sidebar()

# body head
with st.form("my_form",clear_on_submit=False):
    st.markdown('''# 👋 Hi, enter your query here :)''')
    query_input = st.text_input(
        'Enter your keyphrases',
        placeholder='''e.g. "Machine learning"''',
        # label_visibility='collapsed',
        value=''
    )

    show_preview = st.checkbox('show paper preview')

    # Every form must have a submit button.
    submitted = st.form_submit_button("Search")


if submitted:
    # body
    render_body(platforms, number_papers, 5, query_input, show_preview,start_year,end_year,k)
    # '''
    # bar = (
    #     Bar()
    #     .add_xaxis(["Cluster 1", "Cluster 2", "Cluster 3", 'Cluster 4', 'Cluster 5'])
    #     .add_yaxis("numbers", [23, 16, 13, 12, 5])
    #     .set_global_opts(title_opts=opts.TitleOpts(title="Fake Data"))
    # )
    #
    # components.html(generate_html_pyecharts(bar, 'tmp.html'), height=500, width=1000)
    # '''