import streamlit as st import datetime # from .utils import PACKAGE_ROOT # from lrt.utils.functions import template APP_VERSION = 'v0.1.0' def render_sidebar(): icons = f'''
email
''' sidebar_markdown = f'''

TrendFlow

{APP_VERSION}
{icons} --- ## Choose the Paper Search Platforms''' st.sidebar.markdown(sidebar_markdown, unsafe_allow_html=True) # elvsier = st.sidebar.checkbox('Elvsier',value=True) # IEEE = st.sidebar.checkbox('IEEE',value=False) # google = st.sidebar.checkbox('Google Scholar') platforms = st.sidebar.multiselect('Platforms', options= [ # 'Elvsier', 'IEEE', # 'Google Scholar', 'Arxiv', 'Paper with Code' ], default=[ # 'Elvsier', 'IEEE', # 'Google Scholar', 'Arxiv', 'Paper with Code' ]) st.sidebar.markdown('## Choose the max number of papers to search') number_papers = st.sidebar.slider('number', 10, 100, 20, 5) st.sidebar.markdown('## Choose the start year of publication') this_year = datetime.date.today().year start_year = st.sidebar.slider('year start:', 2000, this_year, 2010, 1) st.sidebar.markdown('## Choose the end year of publication') end_year = st.sidebar.slider('year end:', 2000, this_year, this_year, 1) with st.sidebar: st.markdown('## Adjust hyperparameters') with st.expander('Clustering Options'): standardization = st.selectbox('1) Standardization before clustering', options=['no', 'yes'], index=0) dr = st.selectbox('2) Dimension reduction', options=['none', 'pca'], index=0) tmp = min(number_papers, 15) max_k = st.slider('3) Max number of clusters', 2, tmp, tmp // 2) cluster_model = st.selectbox('4) Clustering model', options=['Gaussian Mixture Model', 'K-means'], index=0) with st.expander('Keyphrases Generation Options'): model_cpt = st.selectbox(label='Model checkpoint', options=['KeyBart', 'KeyBartAdapter', 'keyphrase-transformer'], index=0) st.markdown('---') st.markdown(icons, unsafe_allow_html=True) st.markdown(f'''
Copyright © 2022 - {datetime.datetime.now().year} by Tao Xiang
''', unsafe_allow_html=True) # st.sidebar.markdown('## Choose the number of clusters') # k = st.sidebar.slider('number',1,10,3) return platforms, number_papers, start_year, end_year, dict( dimension_reduction=dr, max_k=max_k, model_cpt=model_cpt, standardization=True if standardization == 'yes' else False, cluster_model='gmm' if cluster_model == 'Gaussian Mixture Model' else 'kmeans-euclidean' )