|
import json |
|
import os |
|
import logging |
|
from datetime import datetime |
|
|
|
from lm_eval import tasks, evaluator, utils |
|
|
|
from src.envs import RESULTS_REPO, API |
|
from src.backend.manage_requests import EvalRequest |
|
|
|
logging.getLogger("openai").setLevel(logging.WARNING) |
|
|
|
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None): |
|
if limit: |
|
print( |
|
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." |
|
) |
|
task_names = ["medmcqa", "medqa_4options", "mmlu_anatomy", "mmlu_clinical_knowledge", "mmlu_college_biology", "mmlu_college_medicine", "mmlu_medical_genetics", "mmlu_professional_medicine", "pubmedqa"] |
|
|
|
print(f"Selected Tasks: {task_names}") |
|
results = evaluator.simple_evaluate( |
|
model="hf-causal-experimental", |
|
model_args=eval_request.get_model_args(), |
|
tasks=task_names, |
|
|
|
batch_size=batch_size, |
|
device=device, |
|
no_cache=no_cache, |
|
limit=limit, |
|
write_out=True, |
|
output_base_path="logs" |
|
) |
|
|
|
results["config"]["model_dtype"] = eval_request.precision |
|
results["config"]["model_name"] = eval_request.model |
|
results["config"]["model_sha"] = eval_request.revision |
|
|
|
dumped = json.dumps(results, indent=2) |
|
print(dumped) |
|
|
|
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") |
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
with open(output_path, "w") as f: |
|
f.write(dumped) |
|
|
|
print(evaluator.make_table(results)) |
|
|
|
API.upload_file( |
|
path_or_fileobj=output_path, |
|
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", |
|
repo_id=results_repo, |
|
repo_type="dataset", |
|
) |
|
|
|
return results |