File size: 4,151 Bytes
bab0937 6a4a34c bab0937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import os
import io
import numpy as np
import gradio as gr
import requests
from gtts import gTTS
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
from pydub import AudioSegment
from groq import Groq
RAPIDAPI_KEY = "0875969c18mshea4b5d106303222p197cb2jsnd47e91b7da30"
GROQ_API_KEY = "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"
# Initialize the Groq client
client = Groq(api_key=GROQ_API_KEY)
# Load the Whisper model
processor = AutoProcessor.from_pretrained("ihanif/whisper-medium-urdu")
model = AutoModelForSpeechSeq2Seq.from_pretrained("ihanif/whisper-medium-urdu")
# Function to translate text using Microsoft Translator
def translate(target, text):
url = "https://microsoft-translator-text.p.rapidapi.com/translate"
querystring = {"api-version":"3.0","profanityAction":"NoAction","textType":"plain", "to":target}
payload = [{"Text": text}]
headers = {
"x-rapidapi-key": RAPIDAPI_KEY,
"x-rapidapi-host": "microsoft-translator-text.p.rapidapi.com",
"Content-Type": "application/json"
}
response = requests.post(url, json=payload, headers=headers, params=querystring)
res = response.json()
return res[0]["translations"][0]["text"]
# Function to process audio and generate a response
def process_audio(file_path):
try:
# Load and preprocess the audio file
if file_path.endswith(".m4a"):
audio = AudioSegment.from_file(file_path, format="m4a")
else:
audio = AudioSegment.from_file(file_path)
audio = audio.set_frame_rate(16000) # Whisper requires a 16kHz sample rate
audio = audio.set_channels(1) # Whisper expects mono audio
# Convert audio to numpy array for processing
audio_samples = np.array(audio.get_array_of_samples(), dtype=np.float32) / 32768.0 # Normalize to [-1, 1] range
audio_input = processor(audio_samples, return_tensors="pt", sampling_rate=16000)
# Transcribe the audio using the fine-tuned Whisper model
result = model.generate(**audio_input)
text = processor.batch_decode(result, skip_special_tokens=True)[0]
if not text.strip(): # Check if the transcribed text is empty
return "No speech detected in the audio file.", None
print(f"Transcribed Text (Urdu): {text}") # Debugging step
# Translate the transcribed Urdu text to English
urdu_to_eng = translate("en", text)
print(f"Translated Text (English): {urdu_to_eng}") # Debugging step
# Generate a response using Groq
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": urdu_to_eng}],
model="llama3-8b-8192", # Ensure the model supports Urdu if possible
max_tokens=50
)
# Access the response using dot notation
response_message = chat_completion.choices[0].message.content.strip()
print(f"Groq Response (English): {response_message}") # Debugging step
# Translate the response text back to Urdu
eng_to_urdu = translate("ur", response_message)
print(f"Translated Response (Urdu): {eng_to_urdu}") # Debugging step
# Convert the response text to Urdu speech
tts = gTTS(text=eng_to_urdu, lang="ur")
response_audio_io = io.BytesIO()
tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
response_audio_io.seek(0)
# Save audio to a file to ensure it's generated correctly
with open("response.mp3", "wb") as audio_file:
audio_file.write(response_audio_io.getvalue())
# Return the response text and the path to the saved audio file
return eng_to_urdu, "response.mp3"
except Exception as e:
return f"An error occurred: {e}", None
# Gradio interface to handle the audio input and output
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"), # Use type="filepath"
outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")],
live=True
)
iface.launch() |