Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
|
8 |
+
import gdown
|
9 |
+
import warnings
|
10 |
+
import openai
|
11 |
+
import pandas as pd
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
openai.api_key = "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"
|
17 |
+
|
18 |
+
|
19 |
+
def generate_prompt(question):
|
20 |
+
prompt = f"""
|
21 |
+
### <instruction>: Given an suitable answer for the question asked.
|
22 |
+
### <human>: {question}
|
23 |
+
### <assistant>:
|
24 |
+
""".strip()
|
25 |
+
return prompt
|
26 |
+
|
27 |
+
file_id = '1CjJ-CQhZyr8QowwSksw5uo7O9OYgbq96'
|
28 |
+
|
29 |
+
url = f'https://drive.google.com/uc?id={file_id}'
|
30 |
+
|
31 |
+
output_file = 'data.xlsx'
|
32 |
+
|
33 |
+
gdown.download(url, output_file, quiet=False)
|
34 |
+
|
35 |
+
df = pd.read_csv(output_file, encoding='latin-1')
|
36 |
+
|
37 |
+
df.head()
|
38 |
+
|
39 |
+
sentences = []
|
40 |
+
for row in df['QUESTION']:
|
41 |
+
sentences.append(row)
|
42 |
+
|
43 |
+
|
44 |
+
model_encode = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
45 |
+
embeddings = model_encode.encode(sentences)
|
46 |
+
|
47 |
+
answer = []
|
48 |
+
for index, val in enumerate(df['ORIGINAL/SYNONYM']):
|
49 |
+
if str(val) == "Original":
|
50 |
+
answer.append(index)
|
51 |
+
|
52 |
+
def answer_prompt(text):
|
53 |
+
|
54 |
+
ind, sim = 0, 0
|
55 |
+
bot_response = ''
|
56 |
+
text_embedding = model_encode.encode(text)
|
57 |
+
for index, val in enumerate(embeddings):
|
58 |
+
res = cosine_similarity(text_embedding.reshape(1,-1),embeddings[index].reshape(1,-1))
|
59 |
+
if res[0][0] > sim:
|
60 |
+
sim = res[0][0]
|
61 |
+
ind = index
|
62 |
+
|
63 |
+
for i in range(len(answer)):
|
64 |
+
if answer[i] > ind:
|
65 |
+
bot_response = bot_response = 'This Solution is Extracted from the Database' + '\n' + f'Similarity Score is {round(sim * 100)} %' + '\n' + f'The issue is raised for {df["TECHNOLOGY"][answer[i - 1]]}' + '\n' + df['SOLUTION'][answer[i - 1]]
|
66 |
+
break
|
67 |
+
|
68 |
+
if sim > 0.5:
|
69 |
+
return bot_response
|
70 |
+
|
71 |
+
else:
|
72 |
+
|
73 |
+
prompt = generate_prompt(text)
|
74 |
+
response = openai.Completion.create(
|
75 |
+
engine="gpt-3.5-turbo-instruct",
|
76 |
+
prompt = prompt,
|
77 |
+
max_tokens = 1024,
|
78 |
+
top_p = 0.7,
|
79 |
+
temperature = 0.3,
|
80 |
+
presence_penalty = 0.7,
|
81 |
+
)
|
82 |
+
|
83 |
+
return 'This response is generated by GPT 3.5 Turbo LLM' + '\n' + response['choices'][0]['text']
|
84 |
+
|
85 |
+
iface = gr.Interface(fn=answer_prompt,
|
86 |
+
inputs=gr.Textbox(lines=10, label="Enter Your Issue", css={"font-size":"18px"}),
|
87 |
+
outputs=gr.Textbox(lines=10, label="Generated Solution", css={"font-size":"16px"}))
|
88 |
+
|
89 |
+
iface.launch(inline=False)
|