LanguageClass / app.py
AescF's picture
Update app.py
33d8db0
raw
history blame
2.11 kB
import gradio as gr
import librosa
import numpy as np
from transformers import AutoFeatureExtractor
import os
model_id = "AescF/hubert-base-ls960-finetuned-common_language"
processor = Wav2Vec2Processor.from_pretrained(model_id)
model = Wav2Vec2ForClassification.from_pretrained(model_id)
language_classes = {
0: "Arabic",
1: "Basque",
2: "Breton",
3: "Catalan",
4: "Chinese_China",
5: "Chinese_Hongkong",
6: "Chinese_Taiwan",
7: "Chuvash",
8: "Czech",
9: "Dhivehi",
10: "Dutch",
11: "English",
12: "Esperanto",
13: "Estonian",
14: "French",
15: "Frisian",
16: "Georgian",
17: "German",
18: "Greek",
19: "Hakha_Chin",
20: "Indonesian",
21: "Interlingua",
22: "Italian",
23: "Japanese",
24: "Kabyle",
25: "Kinyarwanda",
26: "Kyrgyz",
27: "Latvian",
28: "Maltese",
29: "Mongolian",
30: "Persian",
31: "Polish",
32: "Portuguese",
33: "Romanian",
34: "Romansh_Sursilvan",
35: "Russian",
36: "Sakha",
37: "Slovenian",
38: "Spanish",
39: "Swedish",
40: "Tamil",
41: "Tatar",
42: "Turkish",
43: "Ukranian",
44: "Welsh"
}
def predict_language(audio):
# Read audio file
audio_input, sr = librosa.load(audio, sr=16000)
# Convert to suitable format
input_values = processor(audio_input, return_tensors="pt", padding=True).input_values
# Make prediction
with torch.no_grad():
logits = model(input_values).logits
# Compute probabilities
probabilities = torch.softmax(logits, dim=1)
# Retrieve label
predicted_language_idx = torch.argmax(probabilities[0]).item()
return {language_classes[predicted_language_idx]: float(probabilities[0][predicted_language_idx])}
iface = gr.Interface(
predict_language,
inputs=gr.inputs.Audio(type="filepath", label="Upload Language Audio file"),
outputs=gr.outputs.Label(),
title="Language Classifier",
live=True
)
script_dir = os.path.abspath(os.path.join(os.path.abspath(''), os.pardir))
iface.launch()