File size: 14,109 Bytes
57bdca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
Benchmarks Hugging Face's Benchmarking tools are deprecated and it is advised to use external Benchmarking libraries to measure the speed and memory complexity of Transformer models. [[open-in-colab]] Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks. A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found here. How to benchmark 🤗 Transformers models The classes [PyTorchBenchmark] and [TensorFlowBenchmark] allow to flexibly benchmark 🤗 Transformers models. The benchmark classes allow us to measure the peak memory usage and required time for both inference and training. Hereby, inference is defined by a single forward pass, and training is defined by a single forward pass and backward pass. The benchmark classes [PyTorchBenchmark] and [TensorFlowBenchmark] expect an object of type [PyTorchBenchmarkArguments] and [TensorFlowBenchmarkArguments], respectively, for instantiation. [PyTorchBenchmarkArguments] and [TensorFlowBenchmarkArguments] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type bert-base-cased can be benchmarked. from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]) benchmark = PyTorchBenchmark(args) </pt> <tf>py from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments args = TensorFlowBenchmarkArguments( models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ) benchmark = TensorFlowBenchmark(args) Here, three arguments are given to the benchmark argument data classes, namely models, batch_sizes, and sequence_lengths. The argument models is required and expects a list of model identifiers from the model hub The list arguments batch_sizes and sequence_lengths define the size of the input_ids on which the model is benchmarked. There are many more parameters that can be configured via the benchmark argument data classes. For more detail on these one can either directly consult the files src/transformers/benchmark/benchmark_args_utils.py, src/transformers/benchmark/benchmark_args.py (for PyTorch) and src/transformers/benchmark/benchmark_args_tf.py (for Tensorflow). Alternatively, running the following shell commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow respectively. python examples/pytorch/benchmarking/run_benchmark.py --help An instantiated benchmark object can then simply be run by calling benchmark.run(). results = benchmark.run() print(results) ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s google-bert/bert-base-uncased 8 8 0.006 google-bert/bert-base-uncased 8 32 0.006 google-bert/bert-base-uncased 8 128 0.018 google-bert/bert-base-uncased 8 512 0.088 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB google-bert/bert-base-uncased 8 8 1227 google-bert/bert-base-uncased 8 32 1281 google-bert/bert-base-uncased 8 128 1307 google-bert/bert-base-uncased 8 512 1539 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: PyTorch use_torchscript: False framework_version: 1.4.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 08:58:43.371351 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False </pt> <tf>bash python examples/tensorflow/benchmarking/run_benchmark_tf.py --help An instantiated benchmark object can then simply be run by calling benchmark.run(). results = benchmark.run() print(results) results = benchmark.run() print(results) ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s google-bert/bert-base-uncased 8 8 0.005 google-bert/bert-base-uncased 8 32 0.008 google-bert/bert-base-uncased 8 128 0.022 google-bert/bert-base-uncased 8 512 0.105 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB google-bert/bert-base-uncased 8 8 1330 google-bert/bert-base-uncased 8 32 1330 google-bert/bert-base-uncased 8 128 1330 google-bert/bert-base-uncased 8 512 1770 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: Tensorflow use_xla: False framework_version: 2.2.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 09:26:35.617317 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False By default, the time and the required memory for inference are benchmarked. In the example output above the first two sections show the result corresponding to inference time and inference memory. In addition, all relevant information about the computing environment, e.g. the GPU type, the system, the library versions, etc are printed out in the third section under ENVIRONMENT INFORMATION. This information can optionally be saved in a .csv file when adding the argument save_to_csv=True to [PyTorchBenchmarkArguments] and [TensorFlowBenchmarkArguments] respectively. In this case, every section is saved in a separate .csv file. The path to each .csv file can optionally be defined via the argument data classes. Instead of benchmarking pre-trained models via their model identifier, e.g. google-bert/bert-base-uncased, the user can alternatively benchmark an arbitrary configuration of any available model class. In this case, a list of configurations must be inserted with the benchmark args as follows. from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig args = PyTorchBenchmarkArguments( models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ) config_base = BertConfig() config_384_hid = BertConfig(hidden_size=384) config_6_lay = BertConfig(num_hidden_layers=6) benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s bert-base 8 128 0.006 bert-base 8 512 0.006 bert-base 8 128 0.018 bert-base 8 512 0.088 bert-384-hid 8 8 0.006 bert-384-hid 8 32 0.006 bert-384-hid 8 128 0.011 bert-384-hid 8 512 0.054 bert-6-lay 8 8 0.003 bert-6-lay 8 32 0.004 bert-6-lay 8 128 0.009 bert-6-lay 8 512 0.044 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB bert-base 8 8 1277 bert-base 8 32 1281 bert-base 8 128 1307 bert-base 8 512 1539 bert-384-hid 8 8 1005 bert-384-hid 8 32 1027 bert-384-hid 8 128 1035 bert-384-hid 8 512 1255 bert-6-lay 8 8 1097 bert-6-lay 8 32 1101 bert-6-lay 8 128 1127 bert-6-lay 8 512 1359 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: PyTorch use_torchscript: False framework_version: 1.4.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 09:35:25.143267 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False </pt> <tf>py from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig args = TensorFlowBenchmarkArguments( models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ) config_base = BertConfig() config_384_hid = BertConfig(hidden_size=384) config_6_lay = BertConfig(num_hidden_layers=6) benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s bert-base 8 8 0.005 bert-base 8 32 0.008 bert-base 8 128 0.022 bert-base 8 512 0.106 bert-384-hid 8 8 0.005 bert-384-hid 8 32 0.007 bert-384-hid 8 128 0.018 bert-384-hid 8 512 0.064 bert-6-lay 8 8 0.002 bert-6-lay 8 32 0.003 bert-6-lay 8 128 0.0011 bert-6-lay 8 512 0.074 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB bert-base 8 8 1330 bert-base 8 32 1330 bert-base 8 128 1330 bert-base 8 512 1770 bert-384-hid 8 8 1330 bert-384-hid 8 32 1330 bert-384-hid 8 128 1330 bert-384-hid 8 512 1540 bert-6-lay 8 8 1330 bert-6-lay 8 32 1330 bert-6-lay 8 128 1330 bert-6-lay 8 512 1540 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: Tensorflow use_xla: False framework_version: 2.2.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 09:38:15.487125 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False Again, inference time and required memory for inference are measured, but this time for customized configurations of the BertModel class. This feature can especially be helpful when deciding for which configuration the model should be trained. Benchmark best practices This section lists a couple of best practices one should be aware of when benchmarking a model. Currently, only single device benchmarking is supported. When benchmarking on GPU, it is recommended that the user specifies on which device the code should be run by setting the CUDA_VISIBLE_DEVICES environment variable in the shell, e.g. export CUDA_VISIBLE_DEVICES=0 before running the code. The option no_multi_processing should only be set to True for testing and debugging. To ensure accurate memory measurement it is recommended to run each memory benchmark in a separate process by making sure no_multi_processing is set to True. One should always state the environment information when sharing the results of a model benchmark. Results can vary heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very useful for the community. Sharing your benchmark Previously all available core models (10 at the time) have been benchmarked for inference time, across many different settings: using PyTorch, with and without TorchScript, using TensorFlow, with and without XLA. All of those tests were done across CPUs (except for TensorFlow XLA) and GPUs. The approach is detailed in the following blogpost and the results are available here. With the new benchmark tools, it is easier than ever to share your benchmark results with the community PyTorch Benchmarking Results. TensorFlow Benchmarking Results. |