File size: 12,734 Bytes
57bdca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

Optimize inference using torch.compile()
This guide aims to provide a benchmark on the inference speed-ups introduced with torch.compile() for computer vision models in 🤗 Transformers.
Benefits of torch.compile
Depending on the model and the GPU, torch.compile() yields up to 30% speed-up during inference. To use torch.compile(), simply install any version of torch above 2.0. 
Compiling a model takes time, so it's useful if you are compiling the model only once instead of every time you infer.
To compile any computer vision model of your choice, call torch.compile() on the model as shown below:

from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained(MODEL_ID).to("cuda")
+ model = torch.compile(model)

compile() comes with multiple modes for compiling, which essentially differ in compilation time and inference overhead. max-autotune takes longer than reduce-overhead but results in faster inference. Default mode is fastest for compilation but is not as efficient compared to reduce-overhead for inference time. In this guide, we used the default mode. You can learn more about it here.
We benchmarked torch.compile with different computer vision models, tasks, types of hardware, and batch sizes on torch version 2.0.1.
Benchmarking code
Below you can find the benchmarking code for each task. We warm up the GPU before inference and take the mean time of 300 inferences, using the same image each time.
Image Classification with ViT
thon 
import torch
from PIL import Image
import requests
import numpy as np
from transformers import AutoImageProcessor, AutoModelForImageClassification
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224").to("cuda")
model = torch.compile(model)
processed_input = processor(image, return_tensors='pt').to(device="cuda")
with torch.no_grad():
    _ = model(**processed_input)

Object Detection with DETR
thon 
from transformers import AutoImageProcessor, AutoModelForObjectDetection
processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to("cuda")
model = torch.compile(model)
texts = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=texts, images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
    _ = model(**inputs)

Image Segmentation with Segformer
thon 
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to("cuda")
model = torch.compile(model)
seg_inputs = processor(images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
    _ = model(**seg_inputs)

Below you can find the list of the models we benchmarked.
Image Classification 
- google/vit-base-patch16-224
- microsoft/beit-base-patch16-224-pt22k-ft22k
- facebook/convnext-large-224
- microsoft/resnet-50
Image Segmentation 
- nvidia/segformer-b0-finetuned-ade-512-512
- facebook/mask2former-swin-tiny-coco-panoptic
- facebook/maskformer-swin-base-ade
- google/deeplabv3_mobilenet_v2_1.0_513
Object Detection 
- google/owlvit-base-patch32
- facebook/detr-resnet-101
- microsoft/conditional-detr-resnet-50
Below you can find visualization of inference durations with and without torch.compile() and percentage improvements for each model in different hardware and batch sizes. 

Below you can find inference durations in milliseconds for each model with and without compile(). Note that OwlViT results in OOM in larger batch sizes.
A100 (batch size: 1)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 9.325 | 7.584 | 
| Image Segmentation/Segformer | 11.759 | 10.500 |
| Object Detection/OwlViT | 24.978 | 18.420 |
| Image Classification/BeiT | 11.282 | 8.448 | 
| Object Detection/DETR | 34.619 | 19.040 |
| Image Classification/ConvNeXT | 10.410 | 10.208 | 
| Image Classification/ResNet | 6.531 | 4.124 |
| Image Segmentation/Mask2former | 60.188 | 49.117 |
| Image Segmentation/Maskformer | 75.764 | 59.487 | 
| Image Segmentation/MobileNet | 8.583 | 3.974 |
| Object Detection/Resnet-101 | 36.276 | 18.197 |
| Object Detection/Conditional-DETR | 31.219 | 17.993 |
A100 (batch size: 4)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 14.832 | 14.499 | 
| Image Segmentation/Segformer | 18.838 | 16.476 |
| Image Classification/BeiT | 13.205 | 13.048 | 
| Object Detection/DETR | 48.657 | 32.418|
| Image Classification/ConvNeXT | 22.940 | 21.631 | 
| Image Classification/ResNet | 6.657 | 4.268 |
| Image Segmentation/Mask2former | 74.277 | 61.781 |
| Image Segmentation/Maskformer | 180.700 | 159.116 | 
| Image Segmentation/MobileNet | 14.174 | 8.515 |
| Object Detection/Resnet-101 | 68.101 | 44.998 |
| Object Detection/Conditional-DETR | 56.470 | 35.552 |
A100 (batch size: 16)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 40.944 | 40.010 | 
| Image Segmentation/Segformer | 37.005 | 31.144 |
| Image Classification/BeiT | 41.854 | 41.048 | 
| Object Detection/DETR | 164.382 | 161.902 |
| Image Classification/ConvNeXT | 82.258 | 75.561 | 
| Image Classification/ResNet | 7.018 | 5.024 |
| Image Segmentation/Mask2former | 178.945 | 154.814 |
| Image Segmentation/Maskformer | 638.570 | 579.826 | 
| Image Segmentation/MobileNet | 51.693 | 30.310 |
| Object Detection/Resnet-101 | 232.887 | 155.021 |
| Object Detection/Conditional-DETR | 180.491 | 124.032 |
V100 (batch size: 1)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 10.495 | 6.00 | 
| Image Segmentation/Segformer | 13.321 | 5.862 | 
| Object Detection/OwlViT | 25.769 | 22.395 | 
| Image Classification/BeiT | 11.347 | 7.234 | 
| Object Detection/DETR | 33.951 | 19.388 |
| Image Classification/ConvNeXT | 11.623 | 10.412 | 
| Image Classification/ResNet | 6.484 | 3.820 |
| Image Segmentation/Mask2former | 64.640 | 49.873 |
| Image Segmentation/Maskformer | 95.532 | 72.207 | 
| Image Segmentation/MobileNet | 9.217 | 4.753 |
| Object Detection/Resnet-101 | 52.818 | 28.367 |
| Object Detection/Conditional-DETR | 39.512 | 20.816 |
V100 (batch size: 4)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 15.181 | 14.501 | 
| Image Segmentation/Segformer | 16.787 | 16.188 |
| Image Classification/BeiT | 15.171 | 14.753 | 
| Object Detection/DETR | 88.529 | 64.195 |
| Image Classification/ConvNeXT | 29.574 | 27.085 | 
| Image Classification/ResNet | 6.109 | 4.731 |
| Image Segmentation/Mask2former | 90.402 | 76.926 |
| Image Segmentation/Maskformer | 234.261 | 205.456 | 
| Image Segmentation/MobileNet | 24.623 | 14.816 |
| Object Detection/Resnet-101 | 134.672 | 101.304 |
| Object Detection/Conditional-DETR | 97.464 | 69.739 |
V100 (batch size: 16)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 52.209 | 51.633 | 
| Image Segmentation/Segformer | 61.013 | 55.499 |
| Image Classification/BeiT | 53.938 | 53.581  |
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 109.682 | 100.771 | 
| Image Classification/ResNet | 14.857 | 12.089 |
| Image Segmentation/Mask2former | 249.605 | 222.801 |
| Image Segmentation/Maskformer | 831.142 | 743.645 | 
| Image Segmentation/MobileNet | 93.129 | 55.365 |
| Object Detection/Resnet-101 | 482.425 | 361.843 |
| Object Detection/Conditional-DETR | 344.661 | 255.298 |
T4 (batch size: 1)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 16.520 | 15.786 | 
| Image Segmentation/Segformer | 16.116 | 14.205 |
| Object Detection/OwlViT | 53.634 | 51.105 |
| Image Classification/BeiT | 16.464 | 15.710 | 
| Object Detection/DETR | 73.100 | 53.99 |
| Image Classification/ConvNeXT | 32.932 | 30.845 | 
| Image Classification/ResNet | 6.031 | 4.321 |
| Image Segmentation/Mask2former | 79.192 | 66.815 |
| Image Segmentation/Maskformer | 200.026 | 188.268 | 
| Image Segmentation/MobileNet | 18.908 | 11.997 |
| Object Detection/Resnet-101 | 106.622 | 82.566 |
| Object Detection/Conditional-DETR | 77.594 | 56.984 |
T4 (batch size: 4)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 43.653 | 43.626 | 
| Image Segmentation/Segformer | 45.327 | 42.445 |
| Image Classification/BeiT | 52.007 | 51.354 | 
| Object Detection/DETR | 277.850 | 268.003 |
| Image Classification/ConvNeXT | 119.259 | 105.580 | 
| Image Classification/ResNet | 13.039 | 11.388 |
| Image Segmentation/Mask2former | 201.540 | 184.670 |
| Image Segmentation/Maskformer | 764.052 | 711.280 | 
| Image Segmentation/MobileNet | 74.289 | 48.677 |
| Object Detection/Resnet-101 | 421.859 | 357.614 |
| Object Detection/Conditional-DETR | 289.002 | 226.945 |
T4 (batch size: 16)
| Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|
| Image Classification/ViT | 163.914 | 160.907 | 
| Image Segmentation/Segformer | 192.412 | 163.620 |
| Image Classification/BeiT | 188.978 | 187.976 | 
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 422.886 | 388.078 | 
| Image Classification/ResNet | 44.114 | 37.604 |
| Image Segmentation/Mask2former | 756.337 | 695.291 |
| Image Segmentation/Maskformer | 2842.940 | 2656.88 | 
| Image Segmentation/MobileNet | 299.003 | 201.942 |
| Object Detection/Resnet-101 |  1619.505 | 1262.758 | 
| Object Detection/Conditional-DETR | 1137.513 | 897.390|
PyTorch Nightly
We also benchmarked on PyTorch nightly (2.1.0dev, find the wheel here) and observed improvement in latency both for uncompiled and compiled models. 
A100
| Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 12.462 | 6.954 | 
| Image Classification/BeiT | 4 | 14.109 | 12.851 | 
| Image Classification/BeiT | 16 | 42.179 | 42.147 | 
| Object Detection/DETR | Unbatched | 30.484 | 15.221 |
| Object Detection/DETR | 4 | 46.816 | 30.942 |
| Object Detection/DETR | 16 | 163.749 | 163.706  |
T4
| Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 14.408 | 14.052 | 
| Image Classification/BeiT | 4 | 47.381 | 46.604 | 
| Image Classification/BeiT | 16 | 42.179 | 42.147  | 
| Object Detection/DETR | Unbatched | 68.382 | 53.481 |
| Object Detection/DETR | 4 | 269.615 | 204.785 |
| Object Detection/DETR | 16 | OOM | OOM   |
V100
| Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 13.477 | 7.926 | 
| Image Classification/BeiT | 4 | 15.103 | 14.378 | 
| Image Classification/BeiT | 16 | 52.517 | 51.691  | 
| Object Detection/DETR | Unbatched | 28.706 | 19.077 |
| Object Detection/DETR | 4 | 88.402 | 62.949|
| Object Detection/DETR | 16 | OOM | OOM  |
Reduce Overhead
We benchmarked reduce-overhead compilation mode for A100 and T4 in Nightly.
A100
| Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 11.758 | 7.335 | 
| Image Classification/ConvNeXT | 4 | 23.171 | 21.490 | 
| Image Classification/ResNet | Unbatched | 7.435 | 3.801 | 
| Image Classification/ResNet | 4 | 7.261 | 2.187 | 
| Object Detection/Conditional-DETR | Unbatched | 32.823 | 11.627  | 
| Object Detection/Conditional-DETR | 4 | 50.622 | 33.831  | 
| Image Segmentation/MobileNet | Unbatched | 9.869 | 4.244 |
| Image Segmentation/MobileNet | 4 | 14.385 | 7.946 |
T4
| Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile | 
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 32.137 | 31.84 | 
| Image Classification/ConvNeXT | 4 | 120.944 | 110.209 | 
| Image Classification/ResNet | Unbatched | 9.761 | 7.698 | 
| Image Classification/ResNet | 4 | 15.215 | 13.871 | 
| Object Detection/Conditional-DETR | Unbatched | 72.150 | 57.660  | 
| Object Detection/Conditional-DETR | 4 | 301.494 | 247.543  | 
| Image Segmentation/MobileNet | Unbatched | 22.266 | 19.339  |
| Image Segmentation/MobileNet | 4 | 78.311 | 50.983 |