File size: 82,629 Bytes
57bdca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
{
  "cells": [
    {
      "cell_type": "markdown",
      "id": "844fe3af-9cf1-4c66-aa78-b88a3429acc6",
      "metadata": {
        "id": "844fe3af-9cf1-4c66-aa78-b88a3429acc6"
      },
      "source": [
        "### 0. Setup\n",
        "1) Clone https://github.com/plaggy/rag-gradio-sample-project and set up an environment with gradio_app/requirements.txt.\n",
        "\n",
        "There you'll find the following files:\n",
        "- [prep_scripts/markdown_to_text.py](https://github.com/plaggy/rag-gradio-sample-project/blob/main/prep_scripts/markdown_to_text.py) processes markdown into text; you won't need to change it.\n",
        "- [prep_scripts/lancedb_setup.py](https://github.com/plaggy/rag-gradio-sample-project/blob/main/prep_scripts/lancedb_setup.py) is the file where the database is created and, in particular, an embedding model is defined.\n",
        "- [gradio_app/backend/query_llm.py](https://github.com/plaggy/rag-gradio-sample-project/blob/main/gradio_app/backend/query_llm.py) defines what LLM is used.\n",
        "- [gradio_app/app.py](https://github.com/plaggy/rag-gradio-sample-project/blob/main/gradio_app/app.py) creates the gradio app.\n",
        "\n",
        "In this task you'll try not only OpenAI models, but also open-source models from Hugging Face Hub through InferenceClient interface (see [gradio_app/backend/query_llm.py](https://github.com/plaggy/rag-gradio-sample-project/blob/main/gradio_app/backend/query_llm.py)). Please don't forget to obtain a Hugging Face token for that (see here https://huggingface.co/settings/tokens).\n",
        "\n",
        "\n",
        "A convenient way to work through the project is to test locally and keep committing the changes to the [HF Spaces](https://huggingface.co/spaces) repo. A space gets automatically rebuilt after each commit and you get a new version of your application up and running.\n",
        "\n",
        "2) Create a new space with Gradio SDK. You'll get an almost empty repo, the only thing you'll need from it is README.md which has a config letting a space builder know that it's a Gradio app. Reset a remote upstream of your local rag-gradio-sample-project clone to be your freshly created Spaces repository.\n",
        "\n",
        "The easiest way to set your space up is to set up the gradio_app folder as a git repo, set remote origin to your space repo and checkout the remote README:\n",
        "\n",
        "```\n",
        "cd gradio_app\n",
        "git init\n",
        "git remote add origin <your spaces repo url>\n",
        "git fetch\n",
        "git checkout origin/main README.md\n",
        "```\n",
        "\n",
        "The space is not working yet. You'll get the first working version after the Step 3.\n",
        "\n",
        "- Clone https://github.com/huggingface/transformers to a local machine and run prep_scripts/markdown_to_text.py script to extract raw text from transformers/docs/source/en/. This will be your knowledge base, you don't need it to be a part of your repository\n",
        "\n",
        "Run the command as follows (pass arguments that work for you)\n",
        "```\n",
        "python prep_scripts/markdown_to_text.py --input-dir transformers/docs/source/en/ --output-dir docs\n",
        "```\n"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "762e9fde-c1f4-464c-b12b-dca602fac5ba",
      "metadata": {
        "id": "762e9fde-c1f4-464c-b12b-dca602fac5ba"
      },
      "source": [
        "**By design, you'll be running your experiments in a [Gradio space](https://huggingface.co/docs/hub/en/spaces-sdks-gradio). Apart from deliverables for each step you'll need to provide a link to a functioning RAG space in it final state!**"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!git clone https://github.com/plaggy/rag-gradio-sample-project"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "BUHKUeqR7unC",
        "outputId": "92617e28-da69-45e3-b34e-2b88876ae3dd"
      },
      "id": "BUHKUeqR7unC",
      "execution_count": 1,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Cloning into 'rag-gradio-sample-project'...\n",
            "remote: Enumerating objects: 73, done.\u001b[K\n",
            "remote: Counting objects: 100% (73/73), done.\u001b[K\n",
            "remote: Compressing objects: 100% (59/59), done.\u001b[K\n",
            "remote: Total 73 (delta 23), reused 57 (delta 14), pack-reused 0\u001b[K\n",
            "Receiving objects: 100% (73/73), 31.10 KiB | 10.37 MiB/s, done.\n",
            "Resolving deltas: 100% (23/23), done.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -r /content/rag-gradio-sample-project/gradio_app/requirements.txt"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FFIvgBYDcVMt",
        "outputId": "3c53faf0-f87e-4d19-bbac-90401cc70b71"
      },
      "id": "FFIvgBYDcVMt",
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Collecting lancedb==0.5.3 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading lancedb-0.5.3-py3-none-any.whl (106 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.0/107.0 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting openai==1.11.1 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2))\n",
            "  Downloading openai-1.11.1-py3-none-any.whl (226 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m226.1/226.1 kB\u001b[0m \u001b[31m19.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting sentence-transformers==2.3.1 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3))\n",
            "  Downloading sentence_transformers-2.3.1-py3-none-any.whl (132 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.8/132.8 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting tqdm==4.66.1 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 4))\n",
            "  Downloading tqdm-4.66.1-py3-none-any.whl (78 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.3/78.3 kB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting torch==2.1.1 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading torch-2.1.1-cp310-cp310-manylinux1_x86_64.whl (670.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m670.2/670.2 MB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting transformers==4.37.2 (from -r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 6))\n",
            "  Downloading transformers-4.37.2-py3-none-any.whl (8.4 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.4/8.4 MB\u001b[0m \u001b[31m89.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting deprecation (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading deprecation-2.1.0-py2.py3-none-any.whl (11 kB)\n",
            "Collecting pylance==0.9.12 (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading pylance-0.9.12-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.4/21.4 MB\u001b[0m \u001b[31m68.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting ratelimiter~=1.0 (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading ratelimiter-1.2.0.post0-py3-none-any.whl (6.6 kB)\n",
            "Collecting retry>=0.9.2 (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading retry-0.9.2-py2.py3-none-any.whl (8.0 kB)\n",
            "Requirement already satisfied: pydantic>=1.10 in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (2.6.1)\n",
            "Requirement already satisfied: attrs>=21.3.0 in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (23.2.0)\n",
            "Collecting semver>=3.0 (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading semver-3.0.2-py3-none-any.whl (17 kB)\n",
            "Requirement already satisfied: cachetools in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (5.3.2)\n",
            "Requirement already satisfied: pyyaml>=6.0 in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (6.0.1)\n",
            "Requirement already satisfied: click>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (8.1.7)\n",
            "Requirement already satisfied: requests>=2.31.0 in /usr/local/lib/python3.10/dist-packages (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (2.31.0)\n",
            "Collecting overrides>=0.7 (from lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading overrides-7.7.0-py3-none-any.whl (17 kB)\n",
            "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (3.7.1)\n",
            "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (1.7.0)\n",
            "Collecting httpx<1,>=0.23.0 (from openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2))\n",
            "  Downloading httpx-0.26.0-py3-none-any.whl (75 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.9/75.9 kB\u001b[0m \u001b[31m7.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (1.3.0)\n",
            "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (4.9.0)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (1.25.2)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (3.8.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (0.1.99)\n",
            "Requirement already satisfied: huggingface-hub>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (0.20.3)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (9.4.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (3.13.1)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (3.1.3)\n",
            "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (2023.6.0)\n",
            "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m59.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m43.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m80.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m764.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-nccl-cu12==2.18.1 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_nccl_cu12-2.18.1-py3-none-manylinux1_x86_64.whl (209.8 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.8/209.8 MB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m13.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (2.1.0)\n",
            "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers==4.37.2->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 6)) (23.2)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.37.2->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 6)) (2023.12.25)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers==4.37.2->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 6)) (0.15.2)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.37.2->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 6)) (0.4.2)\n",
            "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5))\n",
            "  Downloading nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl (20.5 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m20.5/20.5 MB\u001b[0m \u001b[31m72.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting pyarrow>=12 (from pylance==0.9.12->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (38.3 MB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m38.3/38.3 MB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (3.6)\n",
            "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (1.2.0)\n",
            "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2)) (2024.2.2)\n",
            "Collecting httpcore==1.* (from httpx<1,>=0.23.0->openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2))\n",
            "  Downloading httpcore-1.0.3-py3-none-any.whl (77 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.0/77.0 kB\u001b[0m \u001b[31m10.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hCollecting h11<0.15,>=0.13 (from httpcore==1.*->httpx<1,>=0.23.0->openai==1.11.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 2))\n",
            "  Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (0.6.0)\n",
            "Requirement already satisfied: pydantic-core==2.16.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (2.16.2)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (3.3.2)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (2.0.7)\n",
            "Requirement already satisfied: decorator>=3.4.2 in /usr/local/lib/python3.10/dist-packages (from retry>=0.9.2->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1)) (4.4.2)\n",
            "Collecting py<2.0.0,>=1.4.26 (from retry>=0.9.2->lancedb==0.5.3->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 1))\n",
            "  Downloading py-1.11.0-py2.py3-none-any.whl (98 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.7/98.7 kB\u001b[0m \u001b[31m12.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (2.1.5)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers==2.3.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 3)) (3.2.0)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch==2.1.1->-r /content/rag-gradio-sample-project/gradio_app/requirements.txt (line 5)) (1.3.0)\n",
            "Installing collected packages: ratelimiter, tqdm, semver, pyarrow, py, overrides, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, h11, deprecation, retry, pylance, nvidia-cusparse-cu12, nvidia-cudnn-cu12, httpcore, nvidia-cusolver-cu12, lancedb, httpx, transformers, torch, openai, sentence-transformers\n",
            "  Attempting uninstall: tqdm\n",
            "    Found existing installation: tqdm 4.66.2\n",
            "    Uninstalling tqdm-4.66.2:\n",
            "      Successfully uninstalled tqdm-4.66.2\n",
            "  Attempting uninstall: pyarrow\n",
            "    Found existing installation: pyarrow 10.0.1\n",
            "    Uninstalling pyarrow-10.0.1:\n",
            "      Successfully uninstalled pyarrow-10.0.1\n",
            "  Attempting uninstall: transformers\n",
            "    Found existing installation: transformers 4.35.2\n",
            "    Uninstalling transformers-4.35.2:\n",
            "      Successfully uninstalled transformers-4.35.2\n",
            "  Attempting uninstall: torch\n",
            "    Found existing installation: torch 2.1.0+cu121\n",
            "    Uninstalling torch-2.1.0+cu121:\n",
            "      Successfully uninstalled torch-2.1.0+cu121\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "llmx 0.0.15a0 requires cohere, which is not installed.\n",
            "llmx 0.0.15a0 requires tiktoken, which is not installed.\n",
            "ibis-framework 7.1.0 requires pyarrow<15,>=2, but you have pyarrow 15.0.0 which is incompatible.\n",
            "torchaudio 2.1.0+cu121 requires torch==2.1.0, but you have torch 2.1.1 which is incompatible.\n",
            "torchdata 0.7.0 requires torch==2.1.0, but you have torch 2.1.1 which is incompatible.\n",
            "torchtext 0.16.0 requires torch==2.1.0, but you have torch 2.1.1 which is incompatible.\n",
            "torchvision 0.16.0+cu121 requires torch==2.1.0, but you have torch 2.1.1 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0mSuccessfully installed deprecation-2.1.0 h11-0.14.0 httpcore-1.0.3 httpx-0.26.0 lancedb-0.5.3 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.18.1 nvidia-nvjitlink-cu12-12.3.101 nvidia-nvtx-cu12-12.1.105 openai-1.11.1 overrides-7.7.0 py-1.11.0 pyarrow-15.0.0 pylance-0.9.12 ratelimiter-1.2.0.post0 retry-0.9.2 semver-3.0.2 sentence-transformers-2.3.1 torch-2.1.1 tqdm-4.66.1 transformers-4.37.2\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install huggingface_hub"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "uVHHnyoedIPy",
        "outputId": "527c17ae-a7db-45db-cf12-46cb07f90342"
      },
      "id": "uVHHnyoedIPy",
      "execution_count": 3,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (0.20.3)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (3.13.1)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2023.6.0)\n",
            "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (2.31.0)\n",
            "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.66.1)\n",
            "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (6.0.1)\n",
            "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (4.9.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub) (23.2)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.3.2)\n",
            "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (3.6)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2.0.7)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub) (2024.2.2)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!huggingface-cli login"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8-M0jyfGdKYe",
        "outputId": "c7f7d369-c51b-43e6-8aa4-182af93a7f4a"
      },
      "id": "8-M0jyfGdKYe",
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "    _|    _|  _|    _|    _|_|_|    _|_|_|  _|_|_|  _|      _|    _|_|_|      _|_|_|_|    _|_|      _|_|_|  _|_|_|_|\n",
            "    _|    _|  _|    _|  _|        _|          _|    _|_|    _|  _|            _|        _|    _|  _|        _|\n",
            "    _|_|_|_|  _|    _|  _|  _|_|  _|  _|_|    _|    _|  _|  _|  _|  _|_|      _|_|_|    _|_|_|_|  _|        _|_|_|\n",
            "    _|    _|  _|    _|  _|    _|  _|    _|    _|    _|    _|_|  _|    _|      _|        _|    _|  _|        _|\n",
            "    _|    _|    _|_|      _|_|_|    _|_|_|  _|_|_|  _|      _|    _|_|_|      _|        _|    _|    _|_|_|  _|_|_|_|\n",
            "\n",
            "    To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .\n",
            "Token: \n",
            "Add token as git credential? (Y/n) \n",
            "Token is valid (permission: read).\n",
            "\u001b[1m\u001b[31mCannot authenticate through git-credential as no helper is defined on your machine.\n",
            "You might have to re-authenticate when pushing to the Hugging Face Hub.\n",
            "Run the following command in your terminal in case you want to set the 'store' credential helper as default.\n",
            "\n",
            "git config --global credential.helper store\n",
            "\n",
            "Read https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more details.\u001b[0m\n",
            "Token has not been saved to git credential helper.\n",
            "Your token has been saved to /root/.cache/huggingface/token\n",
            "Login successful\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "%cd rag-gradio-sample-project/gradio_app/\n",
        "%ls"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "HjXOD1nH1fx5",
        "outputId": "874e8e62-8730-47e2-b185-c7c1e9cc6cfe"
      },
      "id": "HjXOD1nH1fx5",
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/rag-gradio-sample-project/gradio_app\n",
            "app.py  \u001b[0m\u001b[01;34mbackend\u001b[0m/  requirements.txt  \u001b[01;34mtemplates\u001b[0m/\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "%pwd"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 36
        },
        "id": "55IyOwgr1kNR",
        "outputId": "6235574d-e278-40eb-f389-bdae96090556"
      },
      "id": "55IyOwgr1kNR",
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'/content/rag-gradio-sample-project/gradio_app'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!git init\n",
        "!git remote add origin https://huggingface.co/spaces/Ahmadzei/RAG\n",
        "!git config --global init.defaultBranch main\n",
        "!git fetch\n",
        "!git checkout origin/main README.md"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "1wY0VaL-9c14",
        "outputId": "27d6b540-2d9a-4dee-d397-25601878c187"
      },
      "id": "1wY0VaL-9c14",
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[33mhint: Using 'master' as the name for the initial branch. This default branch name\u001b[m\n",
            "\u001b[33mhint: is subject to change. To configure the initial branch name to use in all\u001b[m\n",
            "\u001b[33mhint: of your new repositories, which will suppress this warning, call:\u001b[m\n",
            "\u001b[33mhint: \u001b[m\n",
            "\u001b[33mhint: \tgit config --global init.defaultBranch <name>\u001b[m\n",
            "\u001b[33mhint: \u001b[m\n",
            "\u001b[33mhint: Names commonly chosen instead of 'master' are 'main', 'trunk' and\u001b[m\n",
            "\u001b[33mhint: 'development'. The just-created branch can be renamed via this command:\u001b[m\n",
            "\u001b[33mhint: \u001b[m\n",
            "\u001b[33mhint: \tgit branch -m <name>\u001b[m\n",
            "Initialized empty Git repository in /content/rag-gradio-sample-project/gradio_app/.git/\n",
            "remote: Enumerating objects: 4, done.\u001b[K\n",
            "remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 4\u001b[K\n",
            "Unpacking objects: 100% (4/4), 1.27 KiB | 1.27 MiB/s, done.\n",
            "From https://huggingface.co/spaces/Ahmadzei/RAG\n",
            " * [new branch]      main       -> origin/main\n",
            "Updated 1 path from b4805fb\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!git clone https://github.com/huggingface/transformers"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "cgX7Aqujk37U",
        "outputId": "6294a191-642f-41f2-bb07-0ce528fae8c2"
      },
      "id": "cgX7Aqujk37U",
      "execution_count": 7,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Cloning into 'transformers'...\n",
            "remote: Enumerating objects: 185037, done.\u001b[K\n",
            "remote: Counting objects: 100% (1681/1681), done.\u001b[K\n",
            "remote: Compressing objects: 100% (1231/1231), done.\u001b[K\n",
            "remote: Total 185037 (delta 824), reused 742 (delta 374), pack-reused 183356\u001b[K\n",
            "Receiving objects: 100% (185037/185037), 205.20 MiB | 19.65 MiB/s, done.\n",
            "Resolving deltas: 100% (130045/130045), done.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# !python transformers/prep_scripts/markdown_to_text.py --input_dir transformers/docs/source/en/ --output_dir /content/knowledge_base/\n",
        "!python /content/rag-gradio-sample-project/prep_scripts/markdown_to_text.py --input-dir /content/rag-gradio-sample-project/gradio_app/transformers/docs/source/en/ --output-dir /content/docs/"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2NYMq3KIlMAz",
        "outputId": "d24cd17b-2f77-4f3a-b8c0-449acd9b0f80"
      },
      "id": "2NYMq3KIlMAz",
      "execution_count": 8,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\r0it [00:00, ?it/s]/content/rag-gradio-sample-project/prep_scripts/markdown_to_text.py:22: DeprecationWarning: The 'text' argument to find()-type methods is deprecated. Use 'string' instead.\n",
            "  text = ''.join(soup.findAll(text=True))\n",
            "385it [00:06, 60.38it/s]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "6c813d03-33a7-4ce1-836f-11afc541f291",
      "metadata": {
        "id": "6c813d03-33a7-4ce1-836f-11afc541f291"
      },
      "outputs": [],
      "source": [
        "# Add the link to the space you've just created here:\n",
        "# https://huggingface.co/spaces/Ahmadzei/RAG"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "c970d0a4-fee8-48ac-9377-4a6def7712b2",
      "metadata": {
        "id": "c970d0a4-fee8-48ac-9377-4a6def7712b2"
      },
      "source": [
        "### Step 1: Chunk Your Data\n",
        "\n",
        "To efficiently pull up documents relevant to a query from a knowledge base documents are embedded and stored as vectors. Documents in your knowledge base are not expected to fit into the context length of an embedding model (most have 512 token limit). Hence chunking your documents into smaller pieces is required. Take a deeper dive into why chunking is important and what are the options [here](https://www.pinecone.io/learn/chunking-strategies/).\n",
        "\n",
        "Your task is to implement and compare two chunking strategies: fixed-sized chunking and content-aware chunking. For content-aware you could split by sentences, paragraphs or in some other way that makes sense.\n",
        "\n",
        "The deliverables are:\n",
        "- The code for chunk splitting"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "f7bad8c8",
      "metadata": {
        "id": "f7bad8c8"
      },
      "outputs": [],
      "source": [
        "# Chunk splitting deliverables"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def fixed_size_chunking(text, chunk_size=512):\n",
        "    \"\"\"\n",
        "    Splits the text into fixed-sized chunks.\n",
        "\n",
        "    :param text: The input text to be chunked.\n",
        "    :param chunk_size: The size of each chunk in number of characters.\n",
        "    :return: A list of chunks.\n",
        "    \"\"\"\n",
        "    return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]\n"
      ],
      "metadata": {
        "id": "n9qEj8jfvlPj"
      },
      "id": "n9qEj8jfvlPj",
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "def content_aware_chunking(text, max_chunk_size=512):\n",
        "    \"\"\"\n",
        "    Splits the text into content-aware chunks by sentences.\n",
        "\n",
        "    :param text: The input text to be chunked.\n",
        "    :param max_chunk_size: The maximum size of each chunk in number of characters.\n",
        "    :return: A list of chunks.\n",
        "    \"\"\"\n",
        "    sentences = text.split('. ')  # Simple sentence splitting, can be improved with NLP libraries\n",
        "    chunks = []\n",
        "    current_chunk = \"\"\n",
        "\n",
        "    for sentence in sentences:\n",
        "        if len(current_chunk) + len(sentence) < max_chunk_size:\n",
        "            current_chunk += sentence + \". \"\n",
        "        else:\n",
        "            chunks.append(current_chunk.strip())\n",
        "            current_chunk = sentence + \". \"\n",
        "    if current_chunk:\n",
        "        chunks.append(current_chunk.strip())\n",
        "\n",
        "    return chunks"
      ],
      "metadata": {
        "id": "DB5IlJAdL6Bq"
      },
      "id": "DB5IlJAdL6Bq",
      "execution_count": 10,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import nltk\n",
        "nltk.download('punkt')\n",
        "from nltk.tokenize import sent_tokenize\n",
        "\n",
        "def nltk_chunking(text):\n",
        "    \"\"\"\n",
        "    Divide text into chunks based on sentences.\n",
        "\n",
        "    Args:\n",
        "    text (str): The text to be chunked.\n",
        "\n",
        "    Returns:\n",
        "    list of str: A list containing the text chunks (sentences).\n",
        "    \"\"\"\n",
        "    return sent_tokenize(text)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8eYOiabGvl00",
        "outputId": "abf76bf5-09cb-43f6-b40e-0fffcbf37b3a"
      },
      "id": "8eYOiabGvl00",
      "execution_count": 11,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "[nltk_data] Downloading package punkt to /root/nltk_data...\n",
            "[nltk_data]   Unzipping tokenizers/punkt.zip.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "def paragraph_chunking(text):\n",
        "    \"\"\"\n",
        "    Divide text into chunks based on paragraphs.\n",
        "\n",
        "    Args:\n",
        "    text (str): The text to be chunked.\n",
        "\n",
        "    Returns:\n",
        "    list of str: A list containing the text chunks (paragraphs).\n",
        "    \"\"\"\n",
        "    return text.split('\\n\\n')"
      ],
      "metadata": {
        "id": "Sk2M6tYmvosj"
      },
      "id": "Sk2M6tYmvosj",
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "import glob\n",
        "\n",
        "def chunk_and_write_docs(input_dir, output_dir_fixed, output_dir_content_aware):\n",
        "    # Ensure output directories exist\n",
        "    os.makedirs(output_dir_fixed, exist_ok=True)\n",
        "    os.makedirs(output_dir_content_aware, exist_ok=True)\n",
        "\n",
        "    # List all text files in the input directory\n",
        "    file_paths = glob.glob(os.path.join(input_dir, '*.txt'))\n",
        "\n",
        "    for file_path in file_paths:\n",
        "        # Read the content of the file\n",
        "        with open(file_path, 'r', encoding='utf-8') as file:\n",
        "            text_content = file.read()\n",
        "\n",
        "        # Generate chunks using both methods\n",
        "        fixed_chunks = fixed_size_chunking(text_content)\n",
        "        content_aware_chunks = content_aware_chunking(text_content)\n",
        "\n",
        "        # Extract base name without extension for use in chunk file names\n",
        "        base_name = os.path.splitext(os.path.basename(file_path))[0]\n",
        "\n",
        "        # Fixed-size chunking\n",
        "        fixed_chunk_dir = os.path.join(output_dir_fixed, base_name.replace('.txt', ''))\n",
        "        os.makedirs(fixed_chunk_dir, exist_ok=True)\n",
        "        for i, chunk in enumerate(fixed_chunks):\n",
        "            with open(os.path.join(fixed_chunk_dir, f'chunk_{i}.txt'), 'w', encoding='utf-8') as chunk_file:\n",
        "                chunk_file.write(chunk)\n",
        "\n",
        "        # Content-aware chunking\n",
        "        content_aware_chunk_dir = os.path.join(output_dir_content_aware, base_name.replace('.txt', ''))\n",
        "        os.makedirs(content_aware_chunk_dir, exist_ok=True)\n",
        "        for i, chunk in enumerate(content_aware_chunks):\n",
        "            with open(os.path.join(content_aware_chunk_dir, f'chunk_{i}.txt'), 'w', encoding='utf-8') as chunk_file:\n",
        "                chunk_file.write(chunk)\n",
        "\n",
        "# Define input and output directories\n",
        "input_dir = '/content/docs'\n",
        "output_dir_fixed = '/content/chunked/fixed_size_chunking'\n",
        "output_dir_content_aware = '/content/chunked/content_aware_chunking'\n",
        "\n",
        "# Process the documents\n",
        "chunk_and_write_docs(input_dir, output_dir_fixed, output_dir_content_aware)\n",
        "\n",
        "# To indicate completion and the count of processed files\n",
        "processed_files_count = len(glob.glob(os.path.join(input_dir, '*.txt')))\n",
        "processed_files_count\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FGDf40tqSK2C",
        "outputId": "39033395-444e-4579-a387-1128ec73bc41"
      },
      "id": "FGDf40tqSK2C",
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "381"
            ]
          },
          "metadata": {},
          "execution_count": 13
        }
      ]
    },
    {
      "cell_type": "markdown",
      "id": "5e5ebaad-8d42-430c-b00b-18198cdb9ce8",
      "metadata": {
        "id": "5e5ebaad-8d42-430c-b00b-18198cdb9ce8"
      },
      "source": [
        "### Step 2: Ingest chunks into a database and create an index\n",
        "\n",
        "Chunks need to be vectorized and made accessible to an LLM to enable semantic search with embedding models. A current industry standard is to use a vector database to store and retrieve texts both conveniently and efficiently. There are many products out there, we'll be using [LanceDB](https://lancedb.github.io/lancedb/). LanceDB is a young product, one way it stands out is that it's embedded - it's designed not to be a standalone service but rather a part of an application, more on this [here](https://lancedb.github.io/lancedb/basic/).\n",
        "\n",
        "Find more details on how different databases compare in [this](https://thedataquarry.com/tags/vector-db/) series of posts.\n",
        "\n",
        "Your task is to vectorize and ingest chunked documents into the database.\n",
        "**For each chunking strategy from the previous step create a separate table with one of the embedding models. Compare the chunking strategies and choose one. Perform vectorization+ingestion with the second model only with one chunking strategy of your choice**.\n",
        "Use prep_scrips/lancedb_setup.py to vectorize chunks and store vector representations along with raw text in a Lancedb instance. The script also creates an index for fast ANN retrieval (not really needed for this exercise but necessary at scale). Try different embedding models and see how results differ. The options are:\n",
        "\n",
        "- `sentence-transformers/all-MiniLM-L6-v2`: a light model, produces vectors of length 384\n",
        "- `BAAI/bge-large-en-v1.5`: a much heavier model, embedding vector length is 1024\n",
        "\n",
        "Feel free to explore other embedding models and justify your choice.\n",
        "For different embedding models and different chunking strategies create different tables in the database so you can easily switch between them and compare.\n",
        "\n",
        "Run the embedding+ingestion script as follows, make sure to look into the script and go over the arguments. Note that the number of sub-vectors for indexing must be a divisor of the model embedding size.\n",
        "\n",
        "```\n",
        "python prep_scrips/lancedb_setup.py --emb-model <model name> --table <db table name> --input-dir <folder with chunked docs> --num-sub-vectors <a number which is a divisor of the embedding dim>\n",
        "```\n",
        "\n",
        "Before committing to your space set up environment variables on the settings tab of your space, use `.env` as a ference list of all the things you can customize. Make sure to add HF_TOKEN and OPENAI_API_KEY as secrets.\n",
        "Not all the parameters are required to set via environment variables, most have default values.\n",
        "\n",
        "*The database is expected to be in the `gradio_app` folder under `.lancedb`, make sure to move it there if was initialized elsewhere.* It can be parametrized but it's unnecessary here.\n",
        "\n",
        "To commit large files to Github use `git lfs`:\n",
        "```\n",
        "git lfs install\n",
        "git lfs track \"*.lance\"\n",
        "git lfs track \"*.idx\"\n",
        "git add .gitattributes\n",
        "```\n",
        "Then proceed as usual.\n",
        "\n",
        "For experimenting you can easily switch between embedding models/tables by changing the values of the corresponding env variables in your space (`EMB_MODEL`, `TABLE_NAME`). Overall, every time you change the value of an environment variable a space gets automatically rebuilt.\n",
        "\n",
        "The deliverables are:\n",
        "1. The illustration of how retrieved documents differ depending on the embedding model and the chunking strategy. You should create at least 3 tables: model_1 + chunking_strategy_1, model_1 + chunking_strategy_2, model_2 + chunking_strategy_<1 or 2>\n",
        "2. The analysis of pros and cons of chunking strategies\n",
        "3. The analysis of how retrieved document differ between embedding models (is one better than the other?)\n",
        "4. The analysis of how the embedding time differs between models"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "f7db282e-e03c-41de-9c03-54abf455481f",
      "metadata": {
        "id": "f7db282e-e03c-41de-9c03-54abf455481f"
      },
      "outputs": [],
      "source": [
        "# Embed documents with different chunking strategies and ingest into the database"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install lancedb openai pyarrow pandas numpy sentence-transformers"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "vrrCjCs3-lNy",
        "outputId": "c1a20049-d733-4390-ef65-cd9df1c0109f"
      },
      "id": "vrrCjCs3-lNy",
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Requirement already satisfied: lancedb in /usr/local/lib/python3.10/dist-packages (0.5.3)\n",
            "Requirement already satisfied: openai in /usr/local/lib/python3.10/dist-packages (1.11.1)\n",
            "Requirement already satisfied: pyarrow in /usr/local/lib/python3.10/dist-packages (15.0.0)\n",
            "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (1.5.3)\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.25.2)\n",
            "Requirement already satisfied: sentence-transformers in /usr/local/lib/python3.10/dist-packages (2.3.1)\n",
            "Requirement already satisfied: deprecation in /usr/local/lib/python3.10/dist-packages (from lancedb) (2.1.0)\n",
            "Requirement already satisfied: pylance==0.9.12 in /usr/local/lib/python3.10/dist-packages (from lancedb) (0.9.12)\n",
            "Requirement already satisfied: ratelimiter~=1.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (1.2.0.post0)\n",
            "Requirement already satisfied: retry>=0.9.2 in /usr/local/lib/python3.10/dist-packages (from lancedb) (0.9.2)\n",
            "Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (4.66.1)\n",
            "Requirement already satisfied: pydantic>=1.10 in /usr/local/lib/python3.10/dist-packages (from lancedb) (2.6.1)\n",
            "Requirement already satisfied: attrs>=21.3.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (23.2.0)\n",
            "Requirement already satisfied: semver>=3.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (3.0.2)\n",
            "Requirement already satisfied: cachetools in /usr/local/lib/python3.10/dist-packages (from lancedb) (5.3.2)\n",
            "Requirement already satisfied: pyyaml>=6.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (6.0.1)\n",
            "Requirement already satisfied: click>=8.1.7 in /usr/local/lib/python3.10/dist-packages (from lancedb) (8.1.7)\n",
            "Requirement already satisfied: requests>=2.31.0 in /usr/local/lib/python3.10/dist-packages (from lancedb) (2.31.0)\n",
            "Requirement already satisfied: overrides>=0.7 in /usr/local/lib/python3.10/dist-packages (from lancedb) (7.7.0)\n",
            "Requirement already satisfied: anyio<5,>=3.5.0 in /usr/local/lib/python3.10/dist-packages (from openai) (3.7.1)\n",
            "Requirement already satisfied: distro<2,>=1.7.0 in /usr/lib/python3/dist-packages (from openai) (1.7.0)\n",
            "Requirement already satisfied: httpx<1,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from openai) (0.26.0)\n",
            "Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from openai) (1.3.0)\n",
            "Requirement already satisfied: typing-extensions<5,>=4.7 in /usr/local/lib/python3.10/dist-packages (from openai) (4.9.0)\n",
            "Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n",
            "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)\n",
            "Requirement already satisfied: transformers<5.0.0,>=4.32.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (4.37.2)\n",
            "Requirement already satisfied: torch>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (2.1.1)\n",
            "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.2.2)\n",
            "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (1.11.4)\n",
            "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (3.8.1)\n",
            "Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.1.99)\n",
            "Requirement already satisfied: huggingface-hub>=0.15.1 in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (0.20.3)\n",
            "Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from sentence-transformers) (9.4.0)\n",
            "Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (3.6)\n",
            "Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5,>=3.5.0->openai) (1.2.0)\n",
            "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->openai) (2024.2.2)\n",
            "Requirement already satisfied: httpcore==1.* in /usr/local/lib/python3.10/dist-packages (from httpx<1,>=0.23.0->openai) (1.0.3)\n",
            "Requirement already satisfied: h11<0.15,>=0.13 in /usr/local/lib/python3.10/dist-packages (from httpcore==1.*->httpx<1,>=0.23.0->openai) (0.14.0)\n",
            "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (3.13.1)\n",
            "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (2023.6.0)\n",
            "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.15.1->sentence-transformers) (23.2)\n",
            "Requirement already satisfied: annotated-types>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->lancedb) (0.6.0)\n",
            "Requirement already satisfied: pydantic-core==2.16.2 in /usr/local/lib/python3.10/dist-packages (from pydantic>=1.10->lancedb) (2.16.2)\n",
            "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n",
            "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (3.3.2)\n",
            "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.31.0->lancedb) (2.0.7)\n",
            "Requirement already satisfied: decorator>=3.4.2 in /usr/local/lib/python3.10/dist-packages (from retry>=0.9.2->lancedb) (4.4.2)\n",
            "Requirement already satisfied: py<2.0.0,>=1.4.26 in /usr/local/lib/python3.10/dist-packages (from retry>=0.9.2->lancedb) (1.11.0)\n",
            "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (1.12)\n",
            "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.2.1)\n",
            "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (3.1.3)\n",
            "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
            "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (8.9.2.26)\n",
            "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.3.1)\n",
            "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.0.2.54)\n",
            "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (10.3.2.106)\n",
            "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (11.4.5.107)\n",
            "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.0.106)\n",
            "Requirement already satisfied: nvidia-nccl-cu12==2.18.1 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.18.1)\n",
            "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (12.1.105)\n",
            "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.11.0->sentence-transformers) (2.1.0)\n",
            "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.11.0->sentence-transformers) (12.3.101)\n",
            "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.32.0->sentence-transformers) (2023.12.25)\n",
            "Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.32.0->sentence-transformers) (0.15.2)\n",
            "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.10/dist-packages (from transformers<5.0.0,>=4.32.0->sentence-transformers) (0.4.2)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->sentence-transformers) (1.3.2)\n",
            "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sentence-transformers) (3.2.0)\n",
            "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.11.0->sentence-transformers) (2.1.5)\n",
            "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.11.0->sentence-transformers) (1.3.0)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Setting environment variables\n",
        "os.environ['EMB_MODEL'] = 'sentence-transformers/all-MiniLM-L6-v2' #sentence-transformers/all-MiniLM-L6-v2: a light model, produces vectors of length 384 / BAAI/bge-large-en-v1.5: a much heavier model, embedding vector length is 1024\n",
        "os.environ['TABLE_NAME'] = 'fixed_size_chunking' # fixed_size_chunking / content_aware_chunking\n",
        "os.environ['INPUT_DIR'] = '/content/chunked/docs/fixed_size_chunking/'  # fixed_size_chunking / content_aware_chunking\n",
        "os.environ['NUM_SUB_VECTORS'] = '12'"
      ],
      "metadata": {
        "id": "o3TCdDIEYwk6"
      },
      "id": "o3TCdDIEYwk6",
      "execution_count": 15,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "EMB_MODEL = os.getenv('EMB_MODEL')\n",
        "TABLE_NAME = os.getenv('TABLE_NAME')\n",
        "INPUT_DIR = os.getenv('INPUT_DIR')\n",
        "NUM_SUB_VECTORS = os.getenv('NUM_SUB_VECTORS')"
      ],
      "metadata": {
        "id": "1tVGE7JYZc3i"
      },
      "id": "1tVGE7JYZc3i",
      "execution_count": 16,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print(INPUT_DIR)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "uL8Gzk6TgLtK",
        "outputId": "68c608cf-e685-45c6-fc5f-e51ba204c074"
      },
      "id": "uL8Gzk6TgLtK",
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "/content/chunked/docs/fixed_size_chunking/\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!python /content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py --emb-model {EMB_MODEL} --table {TABLE_NAME} --input-dir {INPUT_DIR} --num-sub-vectors {NUM_SUB_VECTORS}"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Xy1cyu7_zFgO",
        "outputId": "89ade558-d3bf-4aab-9b29-35f72950a07d"
      },
      "id": "Xy1cyu7_zFgO",
      "execution_count": 19,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
            "/usr/local/lib/python3.10/dist-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n",
            "  return self.fget.__get__(instance, owner)()\n",
            "INFO:sentence_transformers.SentenceTransformer:Use pytorch device_name: cpu\n",
            "INFO:__main__:using cpu device\n",
            "0it [00:00, ?it/s]\n",
            "Traceback (most recent call last):\n",
            "  File \"/content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py\", line 96, in <module>\n",
            "    main()\n",
            "  File \"/content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py\", line 88, in main\n",
            "    tbl.create_index(\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/lancedb/table.py\", line 858, in create_index\n",
            "    self._dataset.create_index(\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/lance/dataset.py\", line 1269, in create_index\n",
            "    self._ds.create_index(column, index_type, name, replace, kwargs)\n",
            "OSError: LanceError(Index): KMeans: can not train 256 centroids with 0 vectors, choose a smaller K (< 0) instead, /home/runner/work/lance/lance/rust/lance-index/src/vector/kmeans.rs:45:21\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Setting environment variables\n",
        "os.environ['EMB_MODEL'] = 'sentence-transformers/all-MiniLM-L6-v2' #sentence-transformers/all-MiniLM-L6-v2: a light model, produces vectors of length 384 / BAAI/bge-large-en-v1.5: a much heavier model, embedding vector length is 1024\n",
        "os.environ['TABLE_NAME'] = 'content_aware_chunking' # fixed_size_chunking / content_aware_chunking\n",
        "os.environ['INPUT_DIR'] = '/content/chunked/docs/content_aware_chunking/'  # fixed_size_chunking / content_aware_chunking\n",
        "os.environ['NUM_SUB_VECTORS'] = '12'"
      ],
      "metadata": {
        "id": "t7aqMOI3bh2s"
      },
      "id": "t7aqMOI3bh2s",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "EMB_MODEL2 = os.getenv('EMB_MODEL')\n",
        "TABLE_NAME2 = os.getenv('TABLE_NAME')\n",
        "INPUT_DIR2 = os.getenv('INPUT_DIR')\n",
        "NUM_SUB_VECTORS2 = os.getenv('NUM_SUB_VECTORS')"
      ],
      "metadata": {
        "id": "Gk9ynF4Bbslu"
      },
      "id": "Gk9ynF4Bbslu",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "!python /content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py --emb-model {EMB_MODEL2} --table {TABLE_NAME2} --input-dir {INPUT_DIR2} --num-sub-vectors {NUM_SUB_VECTORS2}"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "rc0n7a9zbwh2",
        "outputId": "50251872-bad0-473b-9ac3-36ed6d7a2e5f"
      },
      "id": "rc0n7a9zbwh2",
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "INFO:sentence_transformers.SentenceTransformer:Load pretrained SentenceTransformer: sentence-transformers/all-MiniLM-L6-v2\n",
            "/usr/local/lib/python3.10/dist-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n",
            "  return self.fget.__get__(instance, owner)()\n",
            "INFO:sentence_transformers.SentenceTransformer:Use pytorch device_name: cpu\n",
            "INFO:__main__:using cpu device\n",
            "0it [00:00, ?it/s]\n",
            "Traceback (most recent call last):\n",
            "  File \"/content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py\", line 100, in <module>\n",
            "    main()\n",
            "  File \"/content/rag-gradio-sample-project/prep_scripts/lancedb_setup.py\", line 92, in main\n",
            "    tbl.create_index(\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/lancedb/table.py\", line 858, in create_index\n",
            "    self._dataset.create_index(\n",
            "  File \"/usr/local/lib/python3.10/dist-packages/lance/dataset.py\", line 1269, in create_index\n",
            "    self._ds.create_index(column, index_type, name, replace, kwargs)\n",
            "OSError: LanceError(Index): KMeans: can not train 256 centroids with 0 vectors, choose a smaller K (< 0) instead, /home/runner/work/lance/lance/rust/lance-index/src/vector/kmeans.rs:45:21\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!git lfs install\n",
        "!git lfs track \"*.lance\"\n",
        "!git lfs track \"*.idx\"\n",
        "!git add .gitattributes\n",
        "# Then commit and push as usual\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "3Mlmy4j7x9Ln",
        "outputId": "c4940d06-37a5-4861-a101-d6cbf753b5d2"
      },
      "id": "3Mlmy4j7x9Ln",
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Updated git hooks.\n",
            "Git LFS initialized.\n",
            "Tracking \"*.lance\"\n",
            "Tracking \"*.idx\"\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "id": "7d818b4f-ba5a-4c81-b6d7-f3474c398d9c",
      "metadata": {
        "id": "7d818b4f-ba5a-4c81-b6d7-f3474c398d9c"
      },
      "source": [
        "### Step 3: Add a reranker\n",
        "\n",
        "A reranker is a second-level model which produces similarity scores for pairs of (input query + retrieved document). Cross-encoders are conventionally used for reranking, their architecture is slightly different from retrieval models (more on it [here] and [here](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)). Cross-encoders are much more costly to run, therefore a retrieval model is used to get a few (dozens) highest-scoring items, and a reranker picks the best among these. The overall pipeline is similar to the recommender system industry standard: a light model retrieves top-n, a precise and heavy model reranks n to get top k, n is orders of magnitude larger than k.\n",
        "\n",
        "Cross-encoders are optional because of the overhead their usage implies. Your task is to implement a reranker using a cross-encoder and assess pros and cons of having it. Do not forget that the process of pulling the most relevant documents becomes two-staged: retrieve a larger number of items first, than rerank and keep the best top-k for context.\n",
        "\n",
        "The models fit for the task:\n",
        "1. BAAI/bge-reranker-large\n",
        "2. cross-encoder/ms-marco-MiniLM-L-6-v2\n",
        "\n",
        "As usual, feel free to pick another model and provide some description to it.\n",
        "\n",
        "The deliverables are:\n",
        "\n",
        "1. The code that enables a reranker.\n",
        "3. A comparison of how the prompt and the model output change after adding a reranker\n",
        "4. The analysis of pros and cons. The evaluation aspects should include the relevance of the top-k documents, the response time.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "ee1b0160-0ba0-4b5f-81c4-ef3ea76850e5",
      "metadata": {
        "id": "ee1b0160-0ba0-4b5f-81c4-ef3ea76850e5"
      },
      "outputs": [],
      "source": [
        "# Implement code for selecting the final documents using a cross-encoder and compare with and without"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from sentence_transformers import SentenceTransformer\n",
        "\n",
        "# Load the model\n",
        "model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # BAAI/bge-reranker-large\n",
        "\n",
        "# Vectorize the query\n",
        "query = \"Your search query here\"\n",
        "query_vector = model.encode(query)"
      ],
      "metadata": {
        "id": "peSWSL0lXOK5"
      },
      "id": "peSWSL0lXOK5",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import lancedb\n",
        "import numpy as np\n",
        "\n",
        "# Connect to LanceDB and open your table\n",
        "db = lancedb.connect(\"/content/rag-gradio-sample-project/gradio_app/.lancedb/\")\n",
        "tbl = db.open_table({TABLE_NAME2})\n",
        "\n",
        "# Perform a vector search for the top-N documents\n",
        "df = tbl.search(query_vector) \\\n",
        "    .metric(\"cosine\") \\\n",
        "    .limit(10) \\\n",
        "    .to_list()  # Or use .to_pandas(), .to_arrow(), etc., based on your preference\n",
        "\n",
        "# `df` now contains the top-N documents and their similarity scores"
      ],
      "metadata": {
        "id": "xd10rndiUCIW"
      },
      "id": "xd10rndiUCIW",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Assuming `df` contains document IDs or keys to fetch the actual documents\n",
        "documents = [db.fetch_document(table_name, doc_id) for doc_id in df]"
      ],
      "metadata": {
        "id": "8KWuDzhxTLTX"
      },
      "id": "8KWuDzhxTLTX",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
        "from torch.utils.data import DataLoader\n",
        "import torch\n",
        "\n",
        "# Initialize the tokenizer and model\n",
        "tokenizer = AutoTokenizer.from_pretrained(\"cross-encoder/ms-marco-MiniLM-L-6-v2\")\n",
        "model = AutoModelForSequenceClassification.from_pretrained(\"cross-encoder/ms-marco-MiniLM-L-6-v2\")\n",
        "\n",
        "def rerank(query, documents):\n",
        "    # Assuming `documents` is a list of texts\n",
        "    pairs = [[query, doc['text']] for doc in documents]  # Adjust based on your `results` structure\n",
        "    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors=\"pt\")\n",
        "    with torch.no_grad():\n",
        "        scores = rerank_model(**inputs).logits[:,1]  # Scores for each pair\n",
        "    # Sort documents by scores in descending order and return\n",
        "    documents = [doc for _, doc in sorted(zip(scores, documents), key=lambda x: x[0], reverse=True)]\n",
        "    return documents"
      ],
      "metadata": {
        "id": "O6xMyqFjRp_m"
      },
      "id": "O6xMyqFjRp_m",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "top_k_documents = rerank(query, documents)[:K]  # Keep top K after reranking"
      ],
      "metadata": {
        "id": "dZtiwhPBRtnS"
      },
      "id": "dZtiwhPBRtnS",
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "id": "f5816c54-a290-4cb0-b7db-3b8901998cb0",
      "metadata": {
        "id": "f5816c54-a290-4cb0-b7db-3b8901998cb0"
      },
      "source": [
        "### Step 4: Try a different LLM\n",
        "\n",
        "The suggested `Mistral-7b-instruct` is a great but small model for an LLM. A larger model can be applied to a wider range of problems and do more complex reasoning. Within the scope of this project a larger model may not be beneficial but for more complex cases the difference would become apparent. Another dimension to explore is a base model which was not instruction fine-tuned - it won't respond to your queries the way you'd expect. It may be a great exercise to see the value of fine-tuning.\n",
        "\n",
        "The task here is to try out an alternative LLM to explore the differences.\n",
        "\n",
        "The options are:\n",
        "1. mistralai/Mistral-7B-v0.1\n",
        "2. mistralai/Mixtral-8x7B-Instruct-v0.1\n",
        "\n",
        "Of course, feel free to choose another one and give some details on how different it is from the initial model.\n",
        "\n",
        "The deliverables are:\n",
        "\n",
        "1. The comparison between outputs of the Mistral-7b-instuct and a different model of your choice.\n",
        "2. The difference in response times if a larger model was chosen. Make sure to make multiple queries to make the comparison meaningful.\n",
        "3. Analyse the differences between outputs and share the conclusions.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "942f39d4-eb27-4f2d-ae47-a5d65f102faa",
      "metadata": {
        "id": "942f39d4-eb27-4f2d-ae47-a5d65f102faa"
      },
      "outputs": [],
      "source": [
        "# Analysis of the difference between LLMs"
      ]
    },
    {
      "cell_type": "markdown",
      "id": "70c16440",
      "metadata": {
        "id": "70c16440"
      },
      "source": [
        "### Step 5 (Bonus): Use an LLM to quantitatively compare outputs of different variants of the system (LLM as a Judge)\n",
        "\n",
        "Use a powerful LLM (e.g. GPT-4) to quantitatively evaluate outputs of two alternative setups (different embedding models, different LLMs, both etc.). For inspiration and for prompts refer to [1](https://arxiv.org/pdf/2306.05685.pdf), [2](https://arxiv.org/pdf/2401.10020.pdf), [3](https://www.airtrain.ai/blog/the-comprehensive-guide-to-llm-evaluation#high-level-approach)\n",
        "\n",
        "The deliverables:\n",
        "\n",
        "1. The code you put together\n",
        "2. The high-level description of the setup\n",
        "3. The results of the qualitative comparison\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "39c18ba0-e54a-478f-9e60-0ea65c29238a",
      "metadata": {
        "id": "39c18ba0-e54a-478f-9e60-0ea65c29238a"
      },
      "outputs": [],
      "source": [
        "# The code implementing LLM-as-a-Judge and the evaluation results"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "id": "2ce78700-2578-4719-8b6b-d59fc669d1c1",
      "metadata": {
        "id": "2ce78700-2578-4719-8b6b-d59fc669d1c1"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.10.11"
    },
    "colab": {
      "provenance": []
    }
  },
  "nbformat": 4,
  "nbformat_minor": 5
}