|
Decoding |
|
strategies like greedy search and contrastive search return a single output sequence. |
|
|
|
Save a custom decoding strategy with your model |
|
If you would like to share your fine-tuned model with a specific generation configuration, you can: |
|
* Create a [GenerationConfig] class instance |
|
* Specify the decoding strategy parameters |
|
* Save your generation configuration with [GenerationConfig.save_pretrained], making sure to leave its config_file_name argument empty |
|
* Set push_to_hub to True to upload your config to the model's repo |
|
thon |
|
|
|
from transformers import AutoModelForCausalLM, GenerationConfig |
|
model = AutoModelForCausalLM.from_pretrained("my_account/my_model") # doctest: +SKIP |
|
generation_config = GenerationConfig( |
|
max_new_tokens=50, do_sample=True, top_k=50, eos_token_id=model.config.eos_token_id |
|
) |
|
generation_config.save_pretrained("my_account/my_model", push_to_hub=True) # doctest: +SKIP |
|
|
|
You can also store several generation configurations in a single directory, making use of the config_file_name |
|
argument in [GenerationConfig.save_pretrained]. |