|
You need to specify |
|
the num_beams greater than 1, and set do_sample=True to use this decoding strategy. |
|
thon |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, set_seed |
|
set_seed(0) # For reproducibility |
|
prompt = "translate English to German: The house is wonderful." |
|
checkpoint = "google-t5/t5-small" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) |
|
outputs = model.generate(**inputs, num_beams=5, do_sample=True) |
|
tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
'Das Haus ist wunderbar.' |
|
|
|
Diverse beam search decoding |
|
The diverse beam search decoding strategy is an extension of the beam search strategy that allows for generating a more diverse |
|
set of beam sequences to choose from. |