#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests import torch from torch.nn.functional import softmax import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM #from torch.nn.functional import softmax from huggingface_hub import login from sentence_transformers import SentenceTransformer, util model_sts = SentenceTransformer('stsb-distilbert-base') from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x import os #print(os.getenv('HF_token')) hf_api_token = os.getenv("HF_token") # For sensitive secrets #app_mode = os.getenv("APP_MODE") # For public variables access_token = hf_api_token print(login(token = access_token)) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B") def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() probs = softmax(shift_logits, dim=-1) gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) mean_prob = torch.mean(gathered_probs).item() return mean_prob def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_man, caption_woman, visual_context_label, context_prob): caption_man = caption_man caption_woman = caption_woman visual_context_label = visual_context_label context_prob = context_prob caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True) caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True) context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb) sim_m = sim_m.cpu().numpy() sim_m = get_sim(sim_m) sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) sim_w = sim_w.cpu().numpy() sim_w = get_sim(sim_w) LM_man = sentence_prob_mean(caption_man) LM_woman = sentence_prob_mean(caption_woman) #LM = scorer.sentence_score(caption, reduce="mean") score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob))) score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Man": float(score_man)/1, "Woman": float(score_woman)/1} #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender (LLAMA-3.2-1B with distilbert)", inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"), gr.Textbox(value="0.2183")], outputs="label", ) demo.launch()