Spaces:
Runtime error
Runtime error
File size: 7,686 Bytes
5ca4e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import json
import os.path as osp
import gradio as gr
import numpy as np
import torch
from llava.mm_utils import get_model_name_from_path
from llava.model.builder import load_pretrained_model
from llava_utils import prompt_wrapper, generator
from utils import normalize, denormalize, load_image
# BASE_DIR = "/workingdir/soh337/llavaguard"
BASE_DIR = "/Users/ahren/Workspace/Multimodal/llavaguard"
IMAGE_PATH = 'unconstrained_attack_images/adversarial_'
MODEL_PATH = "/workingdir/models_hf/liuhaotian/llava-v1.5-13b"
TEXT_SAFETY_PATCHES = {
"optimized": "text_patch_optimized",
"heuristic": "text_patch_heuristic"
}
IMAGE_SAFETY_PATCHES = {
"default": "safety_patch.bmp"
}
def rtp_read(text_file):
dataset = []
lines = open(text_file).read().split("\n")
for li in lines:
obj = json.loads(li)
if obj['challenging']:
dataset.append(obj['prompt']['text'])
return dataset
model = loaded_model_name = None
print('>>> Initializing Models')
prompts = rtp_read(osp.join(BASE_DIR, 'harmful_corpus/rtp_prompts.jsonl'))
out = []
def generate_answer(user_message: str, image_path: str, requested_model_name: str,
image_safety_patch_type: str, text_safety_patch_type: str,
):
global loaded_model_name
text_safety_patch = TEXT_SAFETY_PATCHES[text_safety_patch_type]
image_safety_patch = IMAGE_SAFETY_PATCHES[image_safety_patch_type]
if requested_model_name == "LLaVA":
if requested_model_name == loaded_model_name:
print(f"{requested_model_name} model already loaded.")
else:
print(f"Loading {requested_model_name} model ... ")
model_name = get_model_name_from_path(MODEL_PATH)
tokenizer, model, image_processor, context_len = load_pretrained_model(MODEL_PATH, None,
model_name)
loaded_model_name = requested_model_name
my_generator = generator.Generator(model=model, tokenizer=tokenizer)
# load a randomly-sampled unconstrained attack image as Image object
image = load_image(image_path)
# transform the image using the visual encoder (CLIP) of LLaVA 1.5; the processed image size would be PyTorch tensor whose shape is (336,336).
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()
if image_safety_patch != None:
# make the image pixel values between (0,1)
image = normalize(image)
# load the safety patch tensor whose values are (0,1)
safety_patch = torch.load(image_safety_patch).cuda()
# apply the safety patch to the input image, clamp it between (0,1) and denormalize it to the original pixel values
safe_image = denormalize((image + safety_patch).clamp(0, 1))
# make sure the image value is between (0,1)
print(torch.min(image), torch.max(image), torch.min(safe_image), torch.max(safe_image))
else:
safe_image = image
model.eval()
if text_safety_patch != None:
# use the below for optimal text safety patch
# user_message = text_safety_patch + '\n' + user_message
# use the below for heuristic text safety patch
user_message += '\n' + text_safety_patch
text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message)
print(text_prompt_template)
prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)
response = my_generator.generate(prompt, safe_image).replace("[INST]", "").replace("[/INST]", "").replace(
"[SYS]", "").replace("[/SYS/]", "").strip()
if text_safety_patch != None:
response = response.replace(text_safety_patch, "")
print(" -- continuation: ---")
print(response)
out.append({'prompt': user_message, 'continuation': response})
def get_list_of_examples():
global rtp
examples = []
for i, prompt in enumerate(prompts[:3]): # Use the first 3 prompts for simplicity
image_num = np.random.randint(25) # Randomly select an image number
image_path = f'{IMAGE_PATH}{image_num}.bmp'
examples.append(
[image_path, prompt]
)
return examples
css = """#col-container {max-width: 90%; margin-left: auto; margin-right: auto; display: flex; flex-direction: column;}
#header {text-align: center;}
#col-chatbox {flex: 1; max-height: min(750px, 100%);}
#label {font-size: 2em; padding: 0.5em; margin: 0;}
.message {font-size: 1.2em;}
.message-wrap {max-height: min(700px, 100vh);}
"""
def get_empty_state():
# TODO: Not sure what this means
return gr.State({"arena": None})
examples = get_list_of_examples()
# Define a function to update inputs based on selected example
def update_inputs(example_id):
selected_example = examples[int(example_id)]
return selected_example['image_path'], selected_example['text']
model_selector, image_patch_selector, text_patch_selector = None, None, None
def process_text_and_image(user_message: str, image_path: str):
global model_selector, image_patch_selector, text_patch_selector
print(f"User Message: {user_message}")
# print(f"Text Safety Patch: {safety_patch}")
print(f"Image Path: {image_path}")
print(model_selector.value)
# generate_answer(user_message, image_path, "LLaVA", "heuristic", "default")
generate_answer(user_message, image_path, model_selector.value, image_patch_selector.value, text_patch_selector.value)
with gr.Blocks(css=css) as demo:
state = get_empty_state()
all_components = []
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""# 🦙LLaVAGuard🔥<br>
Safeguarding your Multimodal LLM
**[Project Homepage](#)**""",
elem_id="header",
)
# example_selector = gr.Dropdown(choices=[f"Example {i}" for i, e in enumerate(examples)],
# label="Select an Example")
with gr.Row():
model_selector = gr.Dropdown(choices=["LLaVA"], label="Model", info="Select Model", value="LLaVA")
image_patch_selector = gr.Dropdown(choices=["default"], label="Image Patch", info="Select Image Safety "
"Patch", value="default")
text_patch_selector = gr.Dropdown(choices=["heuristic", "optimized"], label="Text Patch", info="Select "
"Text "
"Safety "
"Patch",
value="heuristic")
image_and_text_uploader = gr.Interface(
fn=process_text_and_image,
inputs=[gr.Image(type="pil", label="Upload your image", interactive=True),
gr.Textbox(placeholder="Input a question", label="Your Question"),
],
examples=examples,
outputs=['text'])
# # Set the action for the generate button
# @demo.events(generate_button)
# def handle_generation(image, question, model, image_patch, text_patch):
# generate_answer(question, image, model, text_patch, image_patch)
# Launch the demo
demo.launch()
|