File size: 7,686 Bytes
5ca4e86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import json
import os.path as osp

import gradio as gr
import numpy as np
import torch

from llava.mm_utils import get_model_name_from_path
from llava.model.builder import load_pretrained_model
from llava_utils import prompt_wrapper, generator
from utils import normalize, denormalize, load_image

# BASE_DIR = "/workingdir/soh337/llavaguard"
BASE_DIR = "/Users/ahren/Workspace/Multimodal/llavaguard"
IMAGE_PATH = 'unconstrained_attack_images/adversarial_'
MODEL_PATH = "/workingdir/models_hf/liuhaotian/llava-v1.5-13b"

TEXT_SAFETY_PATCHES = {
    "optimized": "text_patch_optimized",
    "heuristic": "text_patch_heuristic"
}

IMAGE_SAFETY_PATCHES = {
    "default": "safety_patch.bmp"
}


def rtp_read(text_file):
    dataset = []
    lines = open(text_file).read().split("\n")
    for li in lines:
        obj = json.loads(li)
        if obj['challenging']:
            dataset.append(obj['prompt']['text'])
    return dataset


model = loaded_model_name = None

print('>>> Initializing Models')

prompts = rtp_read(osp.join(BASE_DIR, 'harmful_corpus/rtp_prompts.jsonl'))

out = []


def generate_answer(user_message: str, image_path: str, requested_model_name: str,
                    image_safety_patch_type: str, text_safety_patch_type: str,
            ):

    global loaded_model_name

    text_safety_patch = TEXT_SAFETY_PATCHES[text_safety_patch_type]
    image_safety_patch = IMAGE_SAFETY_PATCHES[image_safety_patch_type]
    if requested_model_name == "LLaVA":

        if requested_model_name == loaded_model_name:

            print(f"{requested_model_name} model already loaded.")

        else:
            print(f"Loading {requested_model_name} model ... ")
            model_name = get_model_name_from_path(MODEL_PATH)

            tokenizer, model, image_processor, context_len = load_pretrained_model(MODEL_PATH, None,

                                                                                   model_name)
            loaded_model_name = requested_model_name
            my_generator = generator.Generator(model=model, tokenizer=tokenizer)

        # load a randomly-sampled unconstrained attack image as Image object
        image = load_image(image_path)
        # transform the image using the visual encoder (CLIP) of LLaVA 1.5; the processed image size would be PyTorch tensor whose shape is (336,336).
        image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].cuda()

        if image_safety_patch != None:
            # make the image pixel values between (0,1)
            image = normalize(image)
            # load the safety patch tensor whose values are (0,1)
            safety_patch = torch.load(image_safety_patch).cuda()
            # apply the safety patch to the input image, clamp it between (0,1) and denormalize it to the original pixel values
            safe_image = denormalize((image + safety_patch).clamp(0, 1))
            # make sure the image value is between (0,1)
            print(torch.min(image), torch.max(image), torch.min(safe_image), torch.max(safe_image))

        else:
            safe_image = image

        model.eval()

        if text_safety_patch != None:
            # use the below for optimal text safety patch
            #            user_message = text_safety_patch + '\n' + user_message
            # use the below for heuristic text safety patch
            user_message += '\n' + text_safety_patch

        text_prompt_template = prompt_wrapper.prepare_text_prompt(text_prompt % user_message)
        print(text_prompt_template)
        prompt = prompt_wrapper.Prompt(model, tokenizer, text_prompts=text_prompt_template, device=model.device)

        response = my_generator.generate(prompt, safe_image).replace("[INST]", "").replace("[/INST]", "").replace(
            "[SYS]", "").replace("[/SYS/]", "").strip()
        if text_safety_patch != None:
            response = response.replace(text_safety_patch, "")

        print(" -- continuation: ---")
        print(response)
        out.append({'prompt': user_message, 'continuation': response})


def get_list_of_examples():

    global rtp
    examples = []
    for i, prompt in enumerate(prompts[:3]):  # Use the first 3 prompts for simplicity
        image_num = np.random.randint(25)  # Randomly select an image number
        image_path = f'{IMAGE_PATH}{image_num}.bmp'

        examples.append(
            [image_path, prompt]
        )

    return examples


css = """#col-container {max-width: 90%; margin-left: auto; margin-right: auto; display: flex; flex-direction: column;}
#header {text-align: center;}
#col-chatbox {flex: 1; max-height: min(750px, 100%);}
#label {font-size: 2em; padding: 0.5em; margin: 0;}
.message {font-size: 1.2em;}
.message-wrap {max-height: min(700px, 100vh);}
"""


def get_empty_state():
    # TODO: Not sure what this means
    return gr.State({"arena": None})


examples = get_list_of_examples()


# Define a function to update inputs based on selected example
def update_inputs(example_id):
    selected_example = examples[int(example_id)]
    return selected_example['image_path'], selected_example['text']



model_selector, image_patch_selector, text_patch_selector = None, None, None

def process_text_and_image(user_message: str, image_path: str):
    global model_selector, image_patch_selector, text_patch_selector
    print(f"User Message: {user_message}")
    # print(f"Text Safety Patch: {safety_patch}")
    print(f"Image Path: {image_path}")
    print(model_selector.value)

    # generate_answer(user_message, image_path, "LLaVA", "heuristic", "default")
    generate_answer(user_message, image_path, model_selector.value, image_patch_selector.value, text_patch_selector.value)



with gr.Blocks(css=css) as demo:
    state = get_empty_state()
    all_components = []

    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """# 🦙LLaVAGuard🔥<br>
    Safeguarding your Multimodal LLM
    **[Project Homepage](#)**""",
            elem_id="header",
        )

        # example_selector = gr.Dropdown(choices=[f"Example {i}" for i, e in enumerate(examples)],
        #                                label="Select an Example")


        with gr.Row():
            model_selector = gr.Dropdown(choices=["LLaVA"], label="Model", info="Select Model", value="LLaVA")
            image_patch_selector = gr.Dropdown(choices=["default"], label="Image Patch", info="Select Image Safety "
                                                                                             "Patch", value="default")
            text_patch_selector = gr.Dropdown(choices=["heuristic", "optimized"], label="Text Patch", info="Select "
                                                                                                           "Text "
                                                                                                           "Safety "
                                                                                                           "Patch",
                                              value="heuristic")

        image_and_text_uploader = gr.Interface(
            fn=process_text_and_image,
            inputs=[gr.Image(type="pil", label="Upload your image", interactive=True),


                    gr.Textbox(placeholder="Input a question", label="Your Question"),
                    ],
            examples=examples,
            outputs=['text'])



# # Set the action for the generate button
# @demo.events(generate_button)
# def handle_generation(image, question, model, image_patch, text_patch):
#     generate_answer(question, image, model, text_patch, image_patch)

# Launch the demo
demo.launch()