Spaces:
Runtime error
Runtime error
File size: 11,453 Bytes
5ca4e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import torch
from tqdm import tqdm
import random
from minigpt_utils import prompt_wrapper, generator
from torchvision.utils import save_image
import numpy as np
from copy import deepcopy
import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import MultiCursor
import seaborn as sns
class Attacker:
def __init__(self, args, model, targets, device='cuda:0'):
self.args = args
self.model = model
self.device = device
self.targets = targets # targets that we want to promte likelihood
self.loss_buffer = []
self.num_targets = len(self.targets)
# freeze and set to eval model:
self.model.eval()
self.model.requires_grad_(False)
self.model.llama_tokenizer.padding_side = "right"
def get_vocabulary(self):
vocab_dicts = self.model.llama_tokenizer.get_vocab()
vocabs = vocab_dicts.keys()
single_token_vocabs = []
single_token_vocabs_embedding = []
single_token_id_to_vocab = dict()
single_token_vocab_to_id = dict()
cnt = 0
for item in vocabs:
tokens = self.model.llama_tokenizer(item, return_tensors="pt", add_special_tokens=False).input_ids.to(self.device)
if tokens.shape[1] == 1:
single_token_vocabs.append(item)
emb = self.model.llama_model.model.embed_tokens(tokens)
single_token_vocabs_embedding.append(emb)
single_token_id_to_vocab[cnt] = item
single_token_vocab_to_id[item] = cnt
cnt+=1
single_token_vocabs_embedding = torch.cat(single_token_vocabs_embedding, dim=1).squeeze()
self.vocabs = single_token_vocabs
self.embedding_matrix = single_token_vocabs_embedding.to(self.device)
self.id_to_vocab = single_token_id_to_vocab
self.vocab_to_id = single_token_vocab_to_id
def hotflip_attack(self, grad, token,
increase_loss=False, num_candidates=1):
token_id = self.vocab_to_id[token]
token_emb = self.embedding_matrix[token_id] # embedding of current token
scores = ((self.embedding_matrix - token_emb) @ grad.T).squeeze(1)
if not increase_loss:
scores *= -1 # lower versus increase the class probability.
_, best_k_ids = torch.topk(scores, num_candidates)
return best_k_ids.detach().cpu().numpy()
def wrap_prompt(self, text_prompt_template, adv_prompt, queries, batch_size):
text_prompts = text_prompt_template % (adv_prompt + ' | ' + queries)
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=[text_prompts], img_prompts=[[]])
prompt.context_embs[0] = prompt.context_embs[0].detach().requires_grad_(True)
prompt.context_embs = prompt.context_embs * batch_size
return prompt
def wrap_prompt_simple(self, text_prompt_template, adv_prompt, batch_size):
text_prompts = text_prompt_template % (adv_prompt) # insert the adversarial prompt
prompt = prompt_wrapper.Prompt(model=self.model, text_prompts=[text_prompts], img_prompts=[[]])
prompt.context_embs[0] = prompt.context_embs[0].detach().requires_grad_(True)
prompt.context_embs = prompt.context_embs * batch_size
return prompt
def update_adv_prompt(self, adv_prompt_tokens, idx, new_token):
next_adv_prompt_tokens = deepcopy(adv_prompt_tokens)
next_adv_prompt_tokens[idx] = new_token
next_adv_prompt = ' '.join(next_adv_prompt_tokens)
return next_adv_prompt_tokens, next_adv_prompt
def attack(self, text_prompt_template, offset, batch_size = 8, num_iter=2000):
print('>>> batch_size: ', batch_size)
my_generator = generator.Generator(model=self.model)
self.get_vocabulary()
vocabs, embedding_matrix = self.vocabs, self.embedding_matrix
trigger_token_length = 32 # equivalent to
adv_prompt_tokens = random.sample(vocabs, trigger_token_length)
adv_prompt = ' '.join(adv_prompt_tokens)
st = time.time()
for t in tqdm(range(num_iter+1)):
for token_to_flip in range(0, trigger_token_length): # for each token in the trigger
batch_targets = random.sample(self.targets, batch_size)
prompt = self.wrap_prompt_simple(text_prompt_template, adv_prompt, batch_size)
target_loss = self.attack_loss(prompt, batch_targets)
loss = target_loss # to minimize
loss.backward()
print('[adv_prompt]', adv_prompt)
print("target_loss: %f" % (target_loss.item()))
self.loss_buffer.append(target_loss.item())
tokens_grad = prompt.context_embs[0].grad[:, token_to_flip+offset, :]
candidates = self.hotflip_attack(tokens_grad, adv_prompt_tokens[token_to_flip],
increase_loss=False, num_candidates=self.args.n_candidates)
self.model.zero_grad()
# try all the candidates and pick the best
# comparing candidates does not require gradient computation
with torch.no_grad():
curr_best_loss = 999999
curr_best_trigger_tokens = None
curr_best_trigger = None
for cand in candidates:
next_adv_prompt_tokens, next_adv_prompt = self.update_adv_prompt(adv_prompt_tokens,
token_to_flip, self.id_to_vocab[cand])
prompt = self.wrap_prompt_simple(text_prompt_template, next_adv_prompt, batch_size)
next_target_loss = self.attack_loss(prompt, batch_targets)
curr_loss = next_target_loss # to minimize
if curr_loss < curr_best_loss:
curr_best_loss = curr_loss
curr_best_trigger_tokens = next_adv_prompt_tokens
curr_best_trigger = next_adv_prompt
# Update overall best if the best current candidate is better
if curr_best_loss < loss:
adv_prompt_tokens = curr_best_trigger_tokens
adv_prompt = curr_best_trigger
print('(update: %f minutes)' % ((time.time() - st) / 60))
self.plot_loss()
if True:
print('######### Output - Iter = %d ##########' % t)
prompt = self.wrap_prompt_simple(text_prompt_template, adv_prompt, batch_size)
with torch.no_grad():
response, _ = my_generator.generate(prompt)
print('[prompt]', prompt.text_prompts[0])
print('>>>', response)
return adv_prompt
def plot_loss(self):
sns.set_theme()
num_iters = len(self.loss_buffer)
num_iters = min(num_iters, 5000)
x_ticks = list(range(0, num_iters))
# Plot and label the training and validation loss values
plt.plot(x_ticks, self.loss_buffer[:num_iters], label='Target Loss')
# Add in a title and axes labels
plt.title('Loss Plot')
plt.xlabel('Iters')
plt.ylabel('Loss')
# Display the plot
plt.legend(loc='best')
plt.savefig('%s/loss_curve.png' % (self.args.save_dir))
plt.clf()
torch.save(self.loss_buffer, '%s/loss' % (self.args.save_dir))
def attack_loss(self, prompts, targets):
context_embs = prompts.context_embs
assert len(context_embs) == len(targets), "Unmathced batch size of prompts and targets, the length of context_embs is %d, the length of targets is %d" % (len(context_embs), len(targets))
batch_size = len(targets)
self.model.llama_tokenizer.padding_side = "right"
to_regress_tokens = self.model.llama_tokenizer(
targets,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.model.max_txt_len,
add_special_tokens=False
).to(self.device)
to_regress_embs = self.model.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
bos = torch.ones([1, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.bos_token_id
bos_embs = self.model.llama_model.model.embed_tokens(bos)
pad = torch.ones([1, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.model.llama_tokenizer.pad_token_id
pad_embs = self.model.llama_model.model.embed_tokens(pad)
T = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.model.llama_tokenizer.pad_token_id, -100
)
pos_padding = torch.argmin(T, dim=1) # a simple trick to find the start position of padding
input_embs = []
targets_mask = []
target_tokens_length = []
context_tokens_length = []
seq_tokens_length = []
for i in range(batch_size):
pos = int(pos_padding[i])
if T[i][pos] == -100:
target_length = pos
else:
target_length = T.shape[1]
targets_mask.append(T[i:i+1, :target_length])
input_embs.append(to_regress_embs[i:i+1, :target_length]) # omit the padding tokens
context_length = context_embs[i].shape[1]
seq_length = target_length + context_length
target_tokens_length.append(target_length)
context_tokens_length.append(context_length)
seq_tokens_length.append(seq_length)
max_length = max(seq_tokens_length)
attention_mask = []
for i in range(batch_size):
# masked out the context from loss computation
context_mask =(
torch.ones([1, context_tokens_length[i] + 1],
dtype=torch.long).to(self.device).fill_(-100) # plus one for bos
)
# padding to align the length
num_to_pad = max_length - seq_tokens_length[i]
padding_mask = (
torch.ones([1, num_to_pad],
dtype=torch.long).to(self.device).fill_(-100)
)
targets_mask[i] = torch.cat( [context_mask, targets_mask[i], padding_mask], dim=1 )
input_embs[i] = torch.cat( [bos_embs, context_embs[i], input_embs[i],
pad_embs.repeat(1, num_to_pad, 1)], dim=1 )
attention_mask.append( torch.LongTensor( [[1]* (1+seq_tokens_length[i]) + [0]*num_to_pad ] ) )
targets = torch.cat( targets_mask, dim=0 ).to(self.device)
inputs_embs = torch.cat( input_embs, dim=0 ).to(self.device)
attention_mask = torch.cat(attention_mask, dim=0).to(self.device)
outputs = self.model.llama_model(
inputs_embeds=inputs_embs,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return loss
|