Spaces:
Runtime error
Runtime error
import torch | |
from tqdm import tqdm | |
import random | |
from llava_utils import prompt_wrapper | |
from torchvision.utils import save_image | |
import copy | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.widgets import MultiCursor | |
import seaborn as sns | |
def denormalize(images): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda() | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda() | |
new_images = (images - mean[None, :, None, None])/ std[None, :, None, None] | |
return new_images | |
def normalize(images): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda() | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda() | |
new_images = (images * std[None, :, None, None])+ mean[None, :, None, None] | |
return new_images | |
class Defender: | |
def __init__(self, args, model, tokenizer, pos_targets, neg_targets, device='cuda:0', is_rtp=False, image_processor=None): | |
self.args = args | |
self.model = model | |
self.tokenizer= tokenizer | |
self.device = device | |
self.is_rtp = is_rtp | |
self.pos_targets = pos_targets | |
self.neg_targets = neg_targets | |
self.num_targets = len(pos_targets) | |
self.loss_buffer = [] | |
# freeze and set to eval model: | |
self.model.eval() | |
self.model.requires_grad_(False) | |
self.image_processor = image_processor | |
def defense_constrained(self, text_prompt, img, batch_size = 4, num_iter=2000, alpha=1/255, epsilon = 128/255 ): | |
print('>>> batch_size:', batch_size) | |
adv_noise = torch.rand_like(img[0]).cuda() * 2 * epsilon - epsilon | |
x = normalize(img).clone().cuda() | |
adv_noise.data = (adv_noise.data + x.data).clamp(0, 1) - x.data | |
adv_noise = adv_noise.cuda() | |
neg_prompt = prompt_wrapper.Prompt(self.model, self.tokenizer, text_prompts=text_prompt, device=self.device) | |
adv_noise.requires_grad_(True) | |
adv_noise.retain_grad() | |
for t in tqdm(range(num_iter + 1)): | |
neg_batch_targets = random.sample(self.neg_targets, batch_size) | |
target_loss = 0 | |
x_adv = x + adv_noise | |
x_adv = denormalize(x_adv) | |
target_loss -= self.attack_loss(neg_prompt,x_adv,neg_batch_targets) | |
target_loss.backward() | |
adv_noise.data = (adv_noise.data - alpha * adv_noise.grad.detach().sign()).clamp(-epsilon, epsilon) | |
adv_noise.data = (adv_noise.data + x.data).clamp(0, 1) - x.data | |
adv_noise.grad.zero_() | |
self.model.zero_grad() | |
self.loss_buffer.append(target_loss.item()) | |
print("target_loss: %f" % ( | |
target_loss.item()) | |
) | |
if t % 20 == 0: | |
self.plot_loss() | |
if t % 100 == 0: | |
safety_patch = adv_noise.detach().cpu().squeeze(0) | |
#if you want to save the image safety patch | |
# save_image(safety_patch, '%s/safety_patch_temp_%d.bmp' % (self.args.save_dir, t)) | |
return safety_patch | |
def plot_loss(self): | |
sns.set_theme() | |
num_iters = len(self.loss_buffer) | |
x_ticks = list(range(0, num_iters)) | |
# Plot and label the training and validation loss values | |
plt.plot(x_ticks, self.loss_buffer, label='Target Loss') | |
# Add in a title and axes labels | |
plt.title('Loss Plot') | |
plt.xlabel('Iters') | |
plt.ylabel('Loss') | |
# Display the plot | |
plt.legend(loc='best') | |
plt.savefig('%s/loss_curve.png' % (self.args.save_dir)) | |
plt.clf() | |
torch.save(self.loss_buffer, '%s/loss' % (self.args.save_dir)) | |
def attack_loss(self, prompts, images, targets): | |
context_length = prompts.context_length | |
context_input_ids = prompts.input_ids | |
batch_size = len(targets) | |
images = images.repeat(batch_size, 1, 1, 1) | |
if len(context_input_ids) == 1: | |
context_length = context_length * batch_size | |
context_input_ids = context_input_ids * batch_size | |
assert len(context_input_ids) == len(targets), f"Unmathced batch size of prompts and targets {len(context_input_ids)} != {len(targets)}" | |
tokens = [ torch.as_tensor([item[1:]]).cuda() for item in self.tokenizer(targets).input_ids] # get rid of the default <bos> in targets tokenization. | |
seq_tokens_length = [] | |
labels = [] | |
input_ids = [] | |
for i, item in enumerate(tokens): | |
L = item.shape[1] + context_length[i] | |
seq_tokens_length.append(L) | |
context_mask = torch.full([1, context_length[i]], -100, | |
dtype=tokens[0].dtype, | |
device=tokens[0].device) | |
labels.append( torch.cat( [context_mask, item], dim=1 ) ) | |
input_ids.append( torch.cat( [context_input_ids[i], item], dim=1 ) ) | |
# padding token | |
pad = torch.full([1, 1], 0, | |
dtype=tokens[0].dtype, | |
device=tokens[0].device).cuda() # it does not matter ... Anyway will be masked out from attention... | |
max_length = max(seq_tokens_length) | |
attention_mask = [] | |
for i in range(batch_size): | |
# padding to align the length | |
num_to_pad = max_length - seq_tokens_length[i] | |
padding_mask = ( | |
torch.full([1, num_to_pad], -100, | |
dtype=torch.long, | |
device=self.device) | |
) | |
labels[i] = torch.cat( [labels[i], padding_mask], dim=1 ) | |
input_ids[i] = torch.cat( [input_ids[i], | |
pad.repeat(1, num_to_pad)], dim=1 ) | |
attention_mask.append( torch.LongTensor( [ [1]* (seq_tokens_length[i]) + [0]*num_to_pad ] ) ) | |
labels = torch.cat( labels, dim=0 ).cuda() | |
input_ids = torch.cat( input_ids, dim=0 ).cuda() | |
attention_mask = torch.cat(attention_mask, dim=0).cuda() | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=labels, | |
images=images.half(), | |
) | |
loss = outputs.loss | |
return loss | |