Spaces:
Runtime error
Runtime error
import torch | |
import json | |
from PIL import Image | |
def load_image(image_path): | |
image = Image.open(image_path).convert('RGB') | |
return image | |
def denormalize(images, device="cuda:0"): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device) | |
new_images = (images - mean[None, :, None, None])/ std[None, :, None, None] | |
return new_images | |
def normalize(images, device="cuda:0"): | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device) | |
new_images = (images * std[None, :, None, None])+ mean[None, :, None, None] | |
return new_images | |
def data_read(text_file,mode,K=1000): | |
dataset = [] | |
for obj in json.load(open(text_file, 'r')): | |
if obj['difficult_direct_answer']==False: | |
dataset.append([obj['image_id'],obj['question'],obj['choices'],obj['correct_choice_idx'],obj['direct_answers']]) | |
print(dataset[:2]) | |
return dataset[:K] |