import streamlit as st import numpy as np from PIL import Image from tensorflow.keras.models import load_model from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle # Load word index for Sentiment Classification word_to_index = imdb.get_word_index() # Function to perform sentiment classification def sentiment_classification(new_review_text, model): max_review_length = 500 new_review_tokens = [word_to_index.get(word, 0) for word in new_review_text.split()] new_review_tokens = pad_sequences([new_review_tokens], maxlen=max_review_length) prediction = model.predict(new_review_tokens) if type(prediction) == list: prediction = prediction[0] return "Positive" if prediction > 0.5 else "Negative" # Function to perform tumor detection def tumor_detection(img, model): img = Image.open(img) img=img.resize((128,128)) img=np.array(img) input_img = np.expand_dims(img, axis=0) res = model.predict(input_img) return "Tumor Detected" if res else "No Tumor" # Streamlit App st.title("Deep Prediction Hub") # Choose between tasks task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection")) if task == "Sentiment Classification": # Input box for new review new_review_text = st.text_area("Enter a New Review:", value="") if st.button("Submit") and not new_review_text.strip(): st.warning("Please enter a review.") if new_review_text.strip(): st.subheader("Choose Model for Sentiment Classification") model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM")) # Load models dynamically based on the selected option if model_option == "Perceptron": with open('imdb_perceptron.pkl', 'rb') as file: model = pickle.load(file) elif model_option == "Backpropagation": with open('BPP.pkl', 'rb') as file: model = pickle.load(file) elif model_option == "DNN": model = load_model('dnn.keras') elif model_option == "RNN": model = load_model('RNN.keras') elif model_option == "LSTM": model = load_model('LSTM.keras') if st.button("Classify Sentiment"): result = sentiment_classification(new_review_text, model) st.subheader("Sentiment Classification Result") st.write(f"**{result}**") elif task == "Tumor Detection": st.subheader("Tumor Detection") uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load the tumor detection model model = load_model('CNN.h5') st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200) st.write("") if st.button("Detect Tumor"): result = tumor_detection(uploaded_file, model) st.subheader("Tumor Detection Result") st.write(f"**{result}**")