|
import os |
|
cnhubert_base_path = "pretrained_models/chinese-hubert-base" |
|
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large" |
|
import re |
|
import gradio as gr |
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
import torch,numpy as np |
|
from pathlib import Path |
|
import os,librosa,torch |
|
from feature_extractor import cnhubert |
|
cnhubert.cnhubert_base_path=cnhubert_base_path |
|
from module.models import SynthesizerTrn |
|
from AR.models.t2s_lightning_module import Text2SemanticLightningModule |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from time import time as ttime |
|
from module.mel_processing import spectrogram_torch |
|
from my_utils import load_audio |
|
|
|
import logging |
|
logging.getLogger('httpx').setLevel(logging.WARNING) |
|
logging.getLogger('httpcore').setLevel(logging.WARNING) |
|
logging.getLogger('multipart').setLevel(logging.WARNING) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
is_half = False |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(bert_path) |
|
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path) |
|
if(is_half==True):bert_model=bert_model.half().to(device) |
|
else:bert_model=bert_model.to(device) |
|
|
|
def get_bert_feature(text, word2ph): |
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = bert_model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] |
|
assert len(word2ph) == len(text) |
|
phone_level_feature = [] |
|
for i in range(len(word2ph)): |
|
repeat_feature = res[i].repeat(word2ph[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|
|
|
|
def load_model(sovits_path, gpt_path): |
|
dict_s2 = torch.load(sovits_path, map_location="cpu") |
|
hps = dict_s2["config"] |
|
|
|
class DictToAttrRecursive: |
|
def __init__(self, input_dict): |
|
for key, value in input_dict.items(): |
|
if isinstance(value, dict): |
|
|
|
setattr(self, key, DictToAttrRecursive(value)) |
|
else: |
|
setattr(self, key, value) |
|
|
|
hps = DictToAttrRecursive(hps) |
|
hps.model.semantic_frame_rate = "25hz" |
|
dict_s1 = torch.load(gpt_path, map_location="cpu") |
|
config = dict_s1["config"] |
|
ssl_model = cnhubert.get_model() |
|
if (is_half == True): |
|
ssl_model = ssl_model.half().to(device) |
|
else: |
|
ssl_model = ssl_model.to(device) |
|
|
|
vq_model = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
if (is_half == True): |
|
vq_model = vq_model.half().to(device) |
|
else: |
|
vq_model = vq_model.to(device) |
|
vq_model.eval() |
|
vq_model.load_state_dict(dict_s2["weight"], strict=False) |
|
hz = 50 |
|
max_sec = config['data']['max_sec'] |
|
|
|
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False) |
|
t2s_model.load_state_dict(dict_s1["weight"]) |
|
if (is_half == True): t2s_model = t2s_model.half() |
|
t2s_model = t2s_model.to(device) |
|
t2s_model.eval() |
|
total = sum([param.nelement() for param in t2s_model.parameters()]) |
|
print("Number of parameter: %.2fM" % (total / 1e6)) |
|
return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec |
|
|
|
|
|
def get_spepc(hps, filename): |
|
audio=load_audio(filename,int(hps.data.sampling_rate)) |
|
audio=torch.FloatTensor(audio) |
|
audio_norm = audio |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False) |
|
return spec |
|
|
|
|
|
def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec): |
|
def tts_fn(ref_wav_path, prompt_text, prompt_language, target_phone, text_language): |
|
t0 = ttime() |
|
prompt_text=prompt_text.strip() |
|
prompt_language=prompt_language |
|
with torch.no_grad(): |
|
wav16k, sr = librosa.load(ref_wav_path, sr=16000) |
|
|
|
wav16k = np.concatenate([np.zeros(int(hps.data.sampling_rate * 0.3)), wav16k]) |
|
wav16k = torch.from_numpy(wav16k) |
|
|
|
wav16k = wav16k.float() |
|
if(is_half==True):wav16k=wav16k.half().to(device) |
|
else:wav16k=wav16k.to(device) |
|
print(wav16k.shape) |
|
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) |
|
|
|
print(ssl_content.shape) |
|
codes = vq_model.extract_latent(ssl_content) |
|
print(codes.shape) |
|
prompt_semantic = codes[0, 0] |
|
t1 = ttime() |
|
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language) |
|
phones1=cleaned_text_to_sequence(phones1) |
|
|
|
audio_opt = [] |
|
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32) |
|
phones = get_phone_from_str_list(target_phone, text_language) |
|
for phones2 in phones: |
|
if(len(phones2) == 0): |
|
continue |
|
if(len(phones2) == 1 and phones2[0] == ""): |
|
continue |
|
|
|
print(phones2) |
|
phones2 = cleaned_text_to_sequence(phones2) |
|
|
|
bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device) |
|
|
|
bert2 = torch.zeros((1024, len(phones2))).to(bert1) |
|
bert = torch.cat([bert1, bert2], 1) |
|
|
|
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) |
|
bert = bert.to(device).unsqueeze(0) |
|
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) |
|
prompt = prompt_semantic.unsqueeze(0).to(device) |
|
t2 = ttime() |
|
idx = 0 |
|
cnt = 0 |
|
while idx == 0 and cnt < 2: |
|
with torch.no_grad(): |
|
|
|
pred_semantic,idx = t2s_model.model.infer_panel( |
|
all_phoneme_ids, |
|
all_phoneme_len, |
|
prompt, |
|
bert, |
|
|
|
top_k=config['inference']['top_k'], |
|
early_stop_num=hz * max_sec) |
|
t3 = ttime() |
|
cnt+=1 |
|
if idx == 0: |
|
return "Error: Generation failure: bad zero prediction.", None |
|
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) |
|
refer = get_spepc(hps, ref_wav_path) |
|
if(is_half==True):refer=refer.half().to(device) |
|
else:refer=refer.to(device) |
|
|
|
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0] |
|
audio_opt.append(audio) |
|
audio_opt.append(zero_wav) |
|
t4 = ttime() |
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) |
|
return "Success", (hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16)) |
|
return tts_fn |
|
|
|
|
|
def get_str_list_from_phone(text, text_language): |
|
|
|
|
|
|
|
texts=text.split("\n") |
|
phone_list = [] |
|
for text in texts: |
|
phones2, word2ph2, norm_text2 = clean_text(text, text_language) |
|
phone_list.append(" ".join(phones2)) |
|
return "\n".join(phone_list) |
|
|
|
def get_phone_from_str_list(str_list:str, language:str = 'ja'): |
|
|
|
|
|
|
|
sentences = str_list.split("\n") |
|
phones = [] |
|
for sentence in sentences: |
|
phones.append(sentence.split(" ")) |
|
return phones |
|
|
|
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",} |
|
def split(todo_text): |
|
todo_text = todo_text.replace("……", "。").replace("——", ",") |
|
if (todo_text[-1] not in splits): todo_text += "。" |
|
i_split_head = i_split_tail = 0 |
|
len_text = len(todo_text) |
|
todo_texts = [] |
|
while (1): |
|
if (i_split_head >= len_text): break |
|
if (todo_text[i_split_head] in splits): |
|
i_split_head += 1 |
|
todo_texts.append(todo_text[i_split_tail:i_split_head]) |
|
i_split_tail = i_split_head |
|
else: |
|
i_split_head += 1 |
|
return todo_texts |
|
|
|
|
|
def change_reference_audio(prompt_text, transcripts): |
|
return transcripts[prompt_text] |
|
|
|
|
|
models = [] |
|
models_info = { |
|
"nimi_sora":{ |
|
"gpt_weight": "9nine/nimi_sora/sora-e3.ckpt", |
|
"sovits_weight": "9nine/nimi_sora/sora_e20_s13100.pth", |
|
"title": "9-nine-新海天", |
|
"cover": "", |
|
"example_reference": "わ~い! 焼っき肉~♪ 焼っき肉~♪" |
|
}, |
|
"sofy":{ |
|
"gpt_weight": "9nine/sofy/sofy-e5.ckpt", |
|
"sovits_weight": "9nine/sofy/sofy_e30_s8430.pth", |
|
"title": "sofy", |
|
"cover": "", |
|
"example_reference": "「ハァイ、早速アーティファクトを見つけたみたいね。 思ったより優秀じゃないの」" |
|
}, |
|
} |
|
for i, info in models_info.items(): |
|
title = info['title'] |
|
cover = info['cover'] |
|
gpt_weight = info['gpt_weight'] |
|
sovits_weight = info['sovits_weight'] |
|
example_reference = info['example_reference'] |
|
transcripts = {} |
|
with open(f"9nine/{i}/transcript.txt", 'r', encoding='utf-8') as file: |
|
for line in file: |
|
line = line.strip().replace("\\", "/") |
|
wav,_,_, t = line.split("|") |
|
wav = os.path.basename(wav) |
|
transcripts[t] = os.path.join(f"9nine/{i}/reference_audio", wav) |
|
|
|
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight) |
|
|
|
|
|
models.append( |
|
( |
|
i, |
|
title, |
|
cover, |
|
transcripts, |
|
example_reference, |
|
create_tts_fn( |
|
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec |
|
) |
|
) |
|
) |
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
"# <center> GPT-SoVITS Demo\n" |
|
) |
|
with gr.Tabs(): |
|
for (name, title, cover, transcripts, example_reference, tts_fn) in models: |
|
with gr.TabItem(name): |
|
with gr.Row(): |
|
gr.Markdown( |
|
'<div align="center">' |
|
f'<a><strong>{title}</strong></a>' |
|
'</div>') |
|
with gr.Row(): |
|
with gr.Column(): |
|
prompt_text = gr.Dropdown( |
|
label="Transcript of the Reference Audio", |
|
value=example_reference, |
|
choices=list(transcripts.keys()) |
|
) |
|
inp_ref_audio = gr.Audio( |
|
label="Reference Audio", |
|
type="filepath", |
|
interactive=False, |
|
value=transcripts[example_reference] |
|
) |
|
transcripts_state = gr.State(value=transcripts) |
|
prompt_text.change( |
|
fn=change_reference_audio, |
|
inputs=[prompt_text, transcripts_state], |
|
outputs=[inp_ref_audio] |
|
) |
|
prompt_language = gr.State(value="ja") |
|
with gr.Column(): |
|
text = gr.Textbox(label="Input Text", value="すもももももももものうち。") |
|
text_language = gr.Dropdown( |
|
label="Language", |
|
choices=["ja"], |
|
value="ja" |
|
) |
|
clean_button = gr.Button("Clean Text ", variant="primary") |
|
inference_button = gr.Button("Generate", variant="primary") |
|
cleaned_text = gr.Textbox(label="Cleaned Phone ( Split by ' ')") |
|
output = gr.Audio(label="Output Audio") |
|
om = gr.Textbox(label="Output Message") |
|
clean_button.click( |
|
fn=get_str_list_from_phone, |
|
inputs=[text, text_language], |
|
outputs=[cleaned_text] |
|
) |
|
inference_button.click( |
|
fn=tts_fn, |
|
inputs=[inp_ref_audio, prompt_text, prompt_language, cleaned_text, text_language], |
|
outputs=[om, output] |
|
) |
|
|
|
app.queue().launch(share=True) |