File size: 7,803 Bytes
b3e26b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
import os
import pdb

if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
import argparse
import logging
from pathlib import Path

import torch, platform
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger  # WandbLogger
from pytorch_lightning.strategies import DDPStrategy
from AR.data.data_module import Text2SemanticDataModule
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
torch.set_float32_matmul_precision("high")
from AR.utils import get_newest_ckpt

from collections import OrderedDict
from time import time as ttime
import shutil
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
    dir=os.path.dirname(path)
    name=os.path.basename(path)
    tmp_path="%s.pth"%(ttime())
    torch.save(fea,tmp_path)
    shutil.move(tmp_path,"%s/%s"%(dir,name))


class my_model_ckpt(ModelCheckpoint):
    def __init__(

        self,

        config,

        if_save_latest,

        if_save_every_weights,

        half_weights_save_dir,

        exp_name,

        **kwargs

    ):
        super().__init__(**kwargs)
        self.if_save_latest = if_save_latest
        self.if_save_every_weights = if_save_every_weights
        self.half_weights_save_dir = half_weights_save_dir
        self.exp_name = exp_name
        self.config = config

    def on_train_epoch_end(self, trainer, pl_module):
        # if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
        if self._should_save_on_train_epoch_end(trainer):
            monitor_candidates = self._monitor_candidates(trainer)
            if (
                self._every_n_epochs >= 1
                and (trainer.current_epoch + 1) % self._every_n_epochs == 0
            ):
                if (
                    self.if_save_latest == True
                ):  ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
                    to_clean = list(os.listdir(self.dirpath))
                self._save_topk_checkpoint(trainer, monitor_candidates)
                if self.if_save_latest == True:
                    for name in to_clean:
                        try:
                            os.remove("%s/%s" % (self.dirpath, name))
                        except:
                            pass
                if self.if_save_every_weights == True:
                    to_save_od = OrderedDict()
                    to_save_od["weight"] = OrderedDict()
                    dictt = trainer.strategy._lightning_module.state_dict()
                    for key in dictt:
                        to_save_od["weight"][key] = dictt[key].half()
                    to_save_od["config"] = self.config
                    to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
                    # torch.save(
                    # print(os.environ)
                    if(os.environ.get("LOCAL_RANK","0")=="0"):
                        my_save(
                            to_save_od,
                            "%s/%s-e%s.ckpt"
                            % (
                                self.half_weights_save_dir,
                                self.exp_name,
                                trainer.current_epoch + 1,
                            ),
                        )
            self._save_last_checkpoint(trainer, monitor_candidates)


def main(args):
    config = load_yaml_config(args.config_file)

    output_dir = Path(config["output_dir"])
    output_dir.mkdir(parents=True, exist_ok=True)

    ckpt_dir = output_dir / "ckpt"
    ckpt_dir.mkdir(parents=True, exist_ok=True)

    seed_everything(config["train"]["seed"], workers=True)
    ckpt_callback: ModelCheckpoint = my_model_ckpt(
        config=config,
        if_save_latest=config["train"]["if_save_latest"],
        if_save_every_weights=config["train"]["if_save_every_weights"],
        half_weights_save_dir=config["train"]["half_weights_save_dir"],
        exp_name=config["train"]["exp_name"],
        save_top_k=-1,
        monitor="top_3_acc",
        mode="max",
        save_on_train_epoch_end=True,
        every_n_epochs=config["train"]["save_every_n_epoch"],
        dirpath=ckpt_dir,
    )
    logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
    os.environ["MASTER_ADDR"]="localhost"
    trainer: Trainer = Trainer(
        max_epochs=config["train"]["epochs"],
        accelerator="gpu" if torch.cuda.is_available() else "cpu",
        # val_check_interval=9999999999999999999999,###不要验证
        # check_val_every_n_epoch=None,
        limit_val_batches=0,
        devices=-1 if torch.cuda.is_available() else 1,
        benchmark=False,
        fast_dev_run=False,
        strategy = DDPStrategy(
            process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
        ) if torch.cuda.is_available() else "auto",
        precision=config["train"]["precision"],
        logger=logger,
        num_sanity_val_steps=0,
        callbacks=[ckpt_callback],
        use_distributed_sampler=False,  # 非常简单的修改,但解决了采用自定义的 bucket_sampler 下训练步数不一致的问题!
    )

    model: Text2SemanticLightningModule = Text2SemanticLightningModule(
        config, output_dir
    )

    data_module: Text2SemanticDataModule = Text2SemanticDataModule(
        config,
        train_semantic_path=config["train_semantic_path"],
        train_phoneme_path=config["train_phoneme_path"],
        # dev_semantic_path=args.dev_semantic_path,
        # dev_phoneme_path=args.dev_phoneme_path
    )

    try:
        # 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
        newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
        ckpt_path = ckpt_dir / newest_ckpt_name
    except Exception:
        ckpt_path = None
    print("ckpt_path:", ckpt_path)
    trainer.fit(model, data_module, ckpt_path=ckpt_path)


# srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-c",
        "--config_file",
        type=str,
        default="configs/s1longer.yaml",
        help="path of config file",
    )
    # args for dataset
    # parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
    # parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')

    # parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
    # parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
    # parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
    # parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')

    args = parser.parse_args()
    logging.info(str(args))
    main(args)