Spaces:
Runtime error
Runtime error
File size: 6,325 Bytes
d188a55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Adapted from https://github.com/kan-bayashi/ParallelWaveGAN
# Original Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""STFT-based Loss modules."""
import torch
import torch.nn.functional as F
from distutils.version import LooseVersion
is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7")
torch.manual_seed(0)
def stft(x, fft_size, hop_size, win_length, window):
"""Perform STFT and convert to magnitude spectrogram.
Args:
x (Tensor): Input signal tensor (B, T).
fft_size (int): FFT size.
hop_size (int): Hop size.
win_length (int): Window length.
window (str): Window function type.
Returns:
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
if is_pytorch_17plus:
x_stft = torch.stft(
x, fft_size, hop_size, win_length, window, return_complex=False
)
else:
x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
real = x_stft[..., 0]
imag = x_stft[..., 1]
# NOTE(kan-bayashi): clamp is needed to avoid nan or inf
return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1)
class SpectralConvergenceLoss(torch.nn.Module):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super(SpectralConvergenceLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
class LogSTFTMagnitudeLoss(torch.nn.Module):
"""Log STFT magnitude loss module."""
def __init__(self):
"""Initilize los STFT magnitude loss module."""
super(LogSTFTMagnitudeLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Log STFT magnitude loss value.
"""
return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
class STFTLoss(torch.nn.Module):
"""STFT loss module."""
def __init__(
self, fft_size=1024, shift_size=120, win_length=600, window="hann_window",
band="full"
):
"""Initialize STFT loss module."""
super(STFTLoss, self).__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.band = band
self.spectral_convergence_loss = SpectralConvergenceLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
# NOTE(kan-bayashi): Use register_buffer to fix #223
self.register_buffer("window", getattr(torch, window)(win_length))
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
if self.band == "high":
freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands
sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
elif self.band == "full":
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
else:
raise NotImplementedError
return sc_loss, mag_loss
class MultiResolutionSTFTLoss(torch.nn.Module):
"""Multi resolution STFT loss module."""
def __init__(
self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240],
window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full"
):
"""Initialize Multi resolution STFT loss module.
Args:
fft_sizes (list): List of FFT sizes.
hop_sizes (list): List of hop sizes.
win_lengths (list): List of window lengths.
window (str): Window function type.
*_lambda (float): a balancing factor across different losses.
band (str): high-band or full-band loss
"""
super(MultiResolutionSTFTLoss, self).__init__()
self.sc_lambda = sc_lambda
self.mag_lambda = mag_lambda
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses += [STFTLoss(fs, ss, wl, window, band)]
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T) or (B, #subband, T).
y (Tensor): Groundtruth signal (B, T) or (B, #subband, T).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
if len(x.shape) == 3:
x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T)
y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T)
sc_loss = 0.0
mag_loss = 0.0
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss *= self.sc_lambda
sc_loss /= len(self.stft_losses)
mag_loss *= self.mag_lambda
mag_loss /= len(self.stft_losses)
return sc_loss, mag_loss |