import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import random device = 'cpu' def ans(question ): description='' category='' seed = random.randint(1, 10000000) print(f'Seed: {seed}') torch.manual_seed(seed) inp = tokenizer.encode(f'{"Категория: " + category + "" if category else ""}Вопрос: {question}Описание: {description}Ответ:',return_tensors="pt").to(device) print('question',question) gen = model.generate(inp, do_sample=True, top_p=0.9, temperature=0.86, max_new_tokens=100, repetition_penalty=1.2) #, stop_token="") gen = tokenizer.decode(gen[0]) return gen[:gen.index('') if '' in gen else len(gen)] # Download checkpoint: checkpoint = "its5Q/rugpt3large_mailqa" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) model = model.eval() # Gradio title = "Ответы на главные вопросы жизни, вселенной и вообще" description = "ruGPT large дообученная на датасете https://www.kaggle.com/datasets/atleast6characterss/otvetmailru-solved-questions " article = "

Github with fine-tuning ruGPT3large on QA

Cозданно при поддержке

Love Death Transformers

" examples = [ ["Как какать?"] ] iface = gr.Interface(fn=ans, title=title, description=description, article=article, examples=examples, inputs="text", outputs="text") if __name__ == "__main__": iface.launch()