import gradio as gr from utils.predict import predict_action import os import glob ##Create list of examples to be loaded example_list = glob.glob("examples/*") example_list = list(map(lambda el:[el], example_list)) demo = gr.Blocks() with demo: gr.Markdown("# **

Video Classification with Transformers

**") description="""#

Demo de clasificador de video usando modelo híbrido basado ​​en Transformers con CNN, el objetivo es reconocer un segemento y recortarlo. \"logo\"

""" gr.Markdown(description) with gr.Tabs(): with gr.TabItem("Upload & Predict"): with gr.Box(): with gr.Row(): input_video = gr.Video(label="Input Video", show_label=True) output_label = gr.Label(label="Model Output", show_label=True) output_gif = gr.Image(label="Video Gif", show_label=True) gr.Markdown("**Predict**") with gr.Box(): with gr.Row(): submit_button = gr.Button("Submit") gr.Markdown("**Ejemplos:**") gr.Markdown("El modelo puede clasificar videos pertenecientes a las siguientes clases: CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing.") # gr.Markdown("CricketShot, PlayingCello, Punch, ShavingBeard, TennisSwing") with gr.Column(): gr.Examples(example_list, [input_video], [output_label,output_gif], predict_action, cache_examples=True) submit_button.click(predict_action, inputs=input_video, outputs=[output_label,output_gif]) demo.launch()