Spaces:
Sleeping
Sleeping
Duplicate from RisticksAI/Zaglyt2-transformer-test
Browse filesCo-authored-by: - - - <ierhon@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +14 -0
- m_conf.py +3 -0
- net.py +82 -0
- requirements.txt +5 -0
- train.txt +0 -0
- word_emb.py +15 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Zaglyt2 Transformer Test
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.33.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: RisticksAI/Zaglyt2-transformer-test
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import net
|
3 |
+
|
4 |
+
def generate(text):
|
5 |
+
o = text
|
6 |
+
r = []
|
7 |
+
for i in range(5):
|
8 |
+
t = net.gen(o)
|
9 |
+
o += " " + t
|
10 |
+
r.append(t)
|
11 |
+
return text + " *"+' '.join(r)+"*"
|
12 |
+
|
13 |
+
iface = gr.Interface(fn=generate, inputs="text", outputs="text")
|
14 |
+
iface.launch()
|
m_conf.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
input_length = 20
|
2 |
+
emb_dim = 128
|
3 |
+
emb_o_dim = 256
|
net.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import word_emb
|
2 |
+
from m_conf import *
|
3 |
+
import numpy as np
|
4 |
+
from gensim.models import Word2Vec
|
5 |
+
from tensorflow.keras.models import Sequential
|
6 |
+
from tensorflow.keras.layers import Dense, Dropout, Flatten, Embedding
|
7 |
+
from keras_self_attention import SeqSelfAttention, SeqWeightedAttention
|
8 |
+
from tensorflow.keras.optimizers import Adam
|
9 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
10 |
+
from tensorflow.keras.losses import MeanSquaredError
|
11 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
12 |
+
|
13 |
+
w2v = Word2Vec.load("w2v.model")
|
14 |
+
|
15 |
+
# загрузка датасета
|
16 |
+
with open('train.txt', 'r') as file:
|
17 |
+
text = file.readlines()
|
18 |
+
|
19 |
+
# создание Tokenizerа
|
20 |
+
tokenizer = Tokenizer()
|
21 |
+
# обучение Tokenizer на основе текста из train.txt
|
22 |
+
tokenizer.fit_on_texts(text)
|
23 |
+
|
24 |
+
# преобразование текстовых данных в последовательности целых чисел с помощью объекта tokenizer
|
25 |
+
tt = tokenizer.texts_to_sequences(text)
|
26 |
+
|
27 |
+
t_sw = [[line[i:i+input_length] for i in range(len(line))] for line in tt]
|
28 |
+
|
29 |
+
combined_list = []
|
30 |
+
|
31 |
+
for line in t_sw:
|
32 |
+
combined_list.extend(line)
|
33 |
+
|
34 |
+
y_t = [[w2v.wv[str(token)] for token in line] for line in tt]
|
35 |
+
|
36 |
+
y = []
|
37 |
+
for line in y_t:
|
38 |
+
y.extend(line)
|
39 |
+
|
40 |
+
# задать длинну входа до переменной input_length, заполняя пустоту нулями
|
41 |
+
X = pad_sequences(combined_list, maxlen=input_length, padding='pre')
|
42 |
+
|
43 |
+
# получаем количество токенов в тексте
|
44 |
+
vocab_size = len(tokenizer.word_index)
|
45 |
+
|
46 |
+
# создание модели машинного обучения и задание её параметров
|
47 |
+
model = Sequential()
|
48 |
+
emb = Embedding(input_dim=vocab_size+1, output_dim=emb_dim, input_length=input_length)
|
49 |
+
model.add(emb)
|
50 |
+
model.add(SeqWeightedAttention())
|
51 |
+
model.add(Flatten())
|
52 |
+
model.add(Dense(512, activation="tanh"))
|
53 |
+
model.add(Dropout(0.5))
|
54 |
+
model.add(Dense(256, activation="tanh"))
|
55 |
+
model.add(Dropout(0.5))
|
56 |
+
model.add(Dense(128, activation="tanh"))
|
57 |
+
model.add(Dense(emb_o_dim, activation="tanh"))
|
58 |
+
|
59 |
+
# компилирование модели с функцией потерь mse и отображением accuracy
|
60 |
+
model.compile(optimizer=Adam(learning_rate=0.001), loss="mse", metrics=["accuracy"])
|
61 |
+
|
62 |
+
# обучение модели
|
63 |
+
set_limit = 2000
|
64 |
+
model.fit(np.array(X[:set_limit]), np.array(y[:set_limit]), epochs=10, batch_size=4)
|
65 |
+
|
66 |
+
def find_closest_token(o, temperature=0.0, top_p=1):
|
67 |
+
token_distances = []
|
68 |
+
for token in w2v.wv.index_to_key:
|
69 |
+
vector = w2v.wv[token]
|
70 |
+
distance = np.sum((o - vector)**2)
|
71 |
+
token_distances.append((token, distance))
|
72 |
+
|
73 |
+
token_distances = sorted(token_distances, key=lambda x: x[1])
|
74 |
+
closest_token = token_distances[0][0]
|
75 |
+
|
76 |
+
return closest_token
|
77 |
+
|
78 |
+
def gen(text):
|
79 |
+
# преобразовать текст в понимаемую нейросетью информацию
|
80 |
+
inp = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=input_length, padding='pre')
|
81 |
+
# сделать предположение и его возвратить
|
82 |
+
return str(tokenizer.index_word[int(find_closest_token(model.predict(inp)[0]))])
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
gensim
|
3 |
+
tensorflow
|
4 |
+
keras
|
5 |
+
keras_self_attention
|
train.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
word_emb.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from m_conf import *
|
2 |
+
from keras.preprocessing.text import Tokenizer
|
3 |
+
from gensim.models import Word2Vec
|
4 |
+
|
5 |
+
with open('train.txt', 'r') as file:
|
6 |
+
lines = file.readlines()
|
7 |
+
|
8 |
+
tokenizer = Tokenizer()
|
9 |
+
tokenizer.fit_on_texts(lines)
|
10 |
+
sequences = tokenizer.texts_to_sequences(lines)
|
11 |
+
tokens = [[str(i) for i in seq] for seq in sequences]
|
12 |
+
|
13 |
+
model = Word2Vec(tokens, window=3, min_count=1, vector_size=emb_o_dim)
|
14 |
+
|
15 |
+
model.save("w2v.model")
|