Ammar-alhaj-ali commited on
Commit
63a9bd9
1 Parent(s): 1bbdd8e

Create new file

Browse files
Files changed (1) hide show
  1. app.py +113 -0
app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
3
+ os.system('pip install -q git+https://github.com/huggingface/transformers.git')
4
+ os.system('pip install pytesseract')
5
+
6
+
7
+
8
+ import gradio as gr
9
+ import numpy as np
10
+ from transformers import AutoModelForTokenClassification
11
+ from datasets.features import ClassLabel
12
+ from transformers import AutoProcessor
13
+ from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
14
+ import torch
15
+ from datasets import load_metric
16
+ from transformers import LayoutLMv3ForTokenClassification
17
+ from transformers.data.data_collator import default_data_collator
18
+
19
+
20
+ from transformers import AutoModelForTokenClassification
21
+ from datasets import load_dataset
22
+ from PIL import Image, ImageDraw, ImageFont
23
+
24
+
25
+ processor = AutoProcessor.from_pretrained("Ammar-alhaj-ali/LayoutLMv3-Fine-Tuning-Invoice", apply_ocr=True)
26
+ model = AutoModelForTokenClassification.from_pretrained("Ammar-alhaj-ali/LayoutLMv3-Fine-Tuning-Invoice")
27
+
28
+
29
+
30
+ # define id2label, label2color
31
+ labels = ['O', 'B-ABN', 'B-BILLER', 'B-BILLER_ADDRESS', 'B-BILLER_POST_CODE', 'B-DUE_DATE', 'B-GST', 'B-INVOICE_DATE', 'B-INVOICE_NUMBER', 'B-SUBTOTAL', 'B-TOTAL', 'I-BILLER_ADDRESS']
32
+ id2label = {v: k for v, k in enumerate(labels)}
33
+ label2color = {
34
+ "B-ABN": 'blue',
35
+ "B-BILLER": 'blue',
36
+ "B-BILLER_ADDRESS": 'green',
37
+ "B-BILLER_POST_CODE": 'orange',
38
+ "B-DUE_DATE": "blue",
39
+ "B-GST": 'green',
40
+ "B-INVOICE_DATE": 'violet',
41
+ "B-INVOICE_NUMBER": 'orange',
42
+ "B-SUBTOTAL": 'green',
43
+ "B-TOTAL": 'blue',
44
+ "I-BILLER_ADDRESS": 'blue',
45
+ "O": 'orange'
46
+ }
47
+
48
+ def unnormalize_box(bbox, width, height):
49
+ return [
50
+ width * (bbox[0] / 1000),
51
+ height * (bbox[1] / 1000),
52
+ width * (bbox[2] / 1000),
53
+ height * (bbox[3] / 1000),
54
+ ]
55
+
56
+
57
+ def iob_to_label(label):
58
+ return label
59
+
60
+
61
+
62
+ def process_image(image):
63
+
64
+ print(type(image))
65
+ width, height = image.size
66
+
67
+ # encode
68
+ encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
69
+ offset_mapping = encoding.pop('offset_mapping')
70
+
71
+ # forward pass
72
+ outputs = model(**encoding)
73
+
74
+ # get predictions
75
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
76
+ token_boxes = encoding.bbox.squeeze().tolist()
77
+
78
+ # only keep non-subword predictions
79
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
80
+ true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
81
+ true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
82
+
83
+ # draw predictions over the image
84
+ draw = ImageDraw.Draw(image)
85
+ font = ImageFont.load_default()
86
+ for prediction, box in zip(true_predictions, true_boxes):
87
+ predicted_label = iob_to_label(prediction)
88
+ draw.rectangle(box, outline=label2color[predicted_label]) #label2color[predicted_label]
89
+ draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) #label2color[predicted_label]
90
+
91
+ return image
92
+
93
+
94
+ title = "Extracting information from FUNSD using the LayoutLMv3 "
95
+ description = "I Fine tuned LayoutLMv3 on FUNSD (Form Understanding in. Noisy Scanned Documents) "
96
+
97
+ article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2]"
98
+
99
+ examples =[['img1.png'],['img2.png'],['img3.png']]
100
+
101
+ css = """.output_image, .input_image {height: 600px !important}"""
102
+
103
+ iface = gr.Interface(fn=process_image,
104
+ inputs=gr.inputs.Image(type="pil"),
105
+ outputs=gr.outputs.Image(type="pil", label="annotated image"),
106
+ title=title,
107
+ description=description,
108
+ article=article,
109
+ examples=examples,
110
+ css=css,
111
+ analytics_enabled = True, enable_queue=True)
112
+
113
+ iface.launch(inline=False, share=False, debug=False)