Spaces:
Paused
Paused
Fabrice-TIERCELIN
commited on
Commit
•
c5303c2
1
Parent(s):
f2ad942
model.ae_dtype = convert_dtype(ae_dtype)
Browse files
app.py
CHANGED
@@ -82,7 +82,12 @@ def check(input_image):
|
|
82 |
raise gr.Error("Please provide an image to restore.")
|
83 |
|
84 |
@spaces.GPU(duration=420)
|
85 |
-
def stage1_process(
|
|
|
|
|
|
|
|
|
|
|
86 |
print('stage1_process ==>>')
|
87 |
if torch.cuda.device_count() == 0:
|
88 |
gr.Warning('Set this space to GPU config to make it work.')
|
@@ -93,6 +98,10 @@ def stage1_process(input_image, gamma_correction):
|
|
93 |
# stage1
|
94 |
LQ = np.array(LQ) / 255 * 2 - 1
|
95 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
|
|
|
|
|
|
|
|
96 |
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
97 |
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
98 |
# gamma correction
|
@@ -318,14 +327,6 @@ def restore(
|
|
318 |
gr.Warning('Set this space to GPU config to make it work.')
|
319 |
return [input_image] * 2, [input_image], None, None
|
320 |
torch.cuda.set_device(SUPIR_device)
|
321 |
-
event_id = str(time.time_ns())
|
322 |
-
event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
|
323 |
-
'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
|
324 |
-
's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
|
325 |
-
's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
|
326 |
-
'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
|
327 |
-
'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
|
328 |
-
'model_select': model_select}
|
329 |
|
330 |
if model_select != model.current_model:
|
331 |
print('load ' + model_select)
|
@@ -362,15 +363,6 @@ def restore(
|
|
362 |
0, 255).astype(np.uint8)
|
363 |
results = [x_samples[i] for i in range(num_samples)]
|
364 |
|
365 |
-
if args.log_history:
|
366 |
-
os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
|
367 |
-
with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
|
368 |
-
f.write(str(event_dict))
|
369 |
-
f.close()
|
370 |
-
Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
|
371 |
-
for i, result in enumerate(results):
|
372 |
-
Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
|
373 |
-
|
374 |
# All the results have the same size
|
375 |
result_height, result_width, result_channel = np.array(results[0]).shape
|
376 |
|
@@ -452,7 +444,7 @@ title_html = """
|
|
452 |
The aim of SUPIR is the beauty and the illustration.
|
453 |
Most of the processes only last few minutes.
|
454 |
This demo can handle huge images but the process will be aborted if it lasts more than 8 min.
|
455 |
-
Please <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">
|
456 |
|
457 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
458 |
"""
|
@@ -477,7 +469,7 @@ with gr.Blocks() as interface:
|
|
477 |
gr.HTML("""
|
478 |
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
479 |
|
480 |
-
You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR.
|
481 |
</big></big></big></p>
|
482 |
""")
|
483 |
gr.HTML(title_html)
|
@@ -677,7 +669,9 @@ with gr.Blocks() as interface:
|
|
677 |
input_image
|
678 |
], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
|
679 |
input_image,
|
680 |
-
gamma_correction
|
|
|
|
|
681 |
], outputs=[
|
682 |
denoise_image,
|
683 |
denoise_information
|
|
|
82 |
raise gr.Error("Please provide an image to restore.")
|
83 |
|
84 |
@spaces.GPU(duration=420)
|
85 |
+
def stage1_process(
|
86 |
+
input_image,
|
87 |
+
gamma_correction,
|
88 |
+
diff_dtype,
|
89 |
+
ae_dtype
|
90 |
+
):
|
91 |
print('stage1_process ==>>')
|
92 |
if torch.cuda.device_count() == 0:
|
93 |
gr.Warning('Set this space to GPU config to make it work.')
|
|
|
98 |
# stage1
|
99 |
LQ = np.array(LQ) / 255 * 2 - 1
|
100 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
101 |
+
|
102 |
+
model.ae_dtype = convert_dtype(ae_dtype)
|
103 |
+
model.model.dtype = convert_dtype(diff_dtype)
|
104 |
+
|
105 |
LQ = model.batchify_denoise(LQ, is_stage1=True)
|
106 |
LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
|
107 |
# gamma correction
|
|
|
327 |
gr.Warning('Set this space to GPU config to make it work.')
|
328 |
return [input_image] * 2, [input_image], None, None
|
329 |
torch.cuda.set_device(SUPIR_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
if model_select != model.current_model:
|
332 |
print('load ' + model_select)
|
|
|
363 |
0, 255).astype(np.uint8)
|
364 |
results = [x_samples[i] for i in range(num_samples)]
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
# All the results have the same size
|
367 |
result_height, result_width, result_channel = np.array(results[0]).shape
|
368 |
|
|
|
444 |
The aim of SUPIR is the beauty and the illustration.
|
445 |
Most of the processes only last few minutes.
|
446 |
This demo can handle huge images but the process will be aborted if it lasts more than 8 min.
|
447 |
+
Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
|
448 |
|
449 |
<p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a>   <a href="http://supir.xpixel.group/">Project Page</a>   <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
|
450 |
"""
|
|
|
469 |
gr.HTML("""
|
470 |
<p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
471 |
|
472 |
+
You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
|
473 |
</big></big></big></p>
|
474 |
""")
|
475 |
gr.HTML(title_html)
|
|
|
669 |
input_image
|
670 |
], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
|
671 |
input_image,
|
672 |
+
gamma_correction,
|
673 |
+
diff_dtype,
|
674 |
+
ae_dtype
|
675 |
], outputs=[
|
676 |
denoise_image,
|
677 |
denoise_information
|