File size: 4,181 Bytes
e547b24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mГенерация {key}:\033[0m {prompt}')
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength
    }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
        print(f"Содержимое ответа: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
        return None
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Ошибка при попытке открыть изображение: {e}")
        return None

css = """
* {}
footer {visibility: hidden !important;}
"""

with gr.Blocks(theme='Nymbo/Nymbo_Theme') as dalle:
    with gr.Tab("Basic Settings"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")

    with gr.Tab("Advanced Settings"):
        with gr.Accordion("Advanced Settings", open=True):
            with gr.Row():
                negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
            with gr.Row():
                steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
            with gr.Row():
                cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
            with gr.Row():
                method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
            with gr.Row():
                strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
            with gr.Row():
                seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)

    with gr.Row():
        text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
    with gr.Row():
        image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
    text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)

dalle.launch(show_api=False, share=False)