Spaces:
Build error
Build error
File size: 51,265 Bytes
fe55e95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
import os
import random
import torch
import cv2
import uuid
from PIL import Image, ImageOps
import numpy as np
from pytorch_lightning import seed_everything
import math
from langchain.llms.openai import OpenAI
def prompts(name, description):
def decorator(func):
func.name = name
func.description = description
return func
return decorator
def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
new_size = new_image.size
old_size = old_image.size
easy_img = np.array(new_image)
gt_img_array = np.array(old_image)
pos_w = (new_size[0] - old_size[0]) // 2
pos_h = (new_size[1] - old_size[1]) // 2
kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
kernel = np.multiply(kernel_h, np.transpose(kernel_w))
kernel[steps:-steps, steps:-steps] = 1
kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
kernel = np.expand_dims(kernel, 2)
kernel = np.repeat(kernel, 3, 2)
weight = np.linspace(0, 1, steps)
top = np.expand_dims(weight, 1)
top = np.repeat(top, old_size[0] - 2 * steps, 1)
top = np.expand_dims(top, 2)
top = np.repeat(top, 3, 2)
weight = np.linspace(1, 0, steps)
down = np.expand_dims(weight, 1)
down = np.repeat(down, old_size[0] - 2 * steps, 1)
down = np.expand_dims(down, 2)
down = np.repeat(down, 3, 2)
weight = np.linspace(0, 1, steps)
left = np.expand_dims(weight, 0)
left = np.repeat(left, old_size[1] - 2 * steps, 0)
left = np.expand_dims(left, 2)
left = np.repeat(left, 3, 2)
weight = np.linspace(1, 0, steps)
right = np.expand_dims(weight, 0)
right = np.repeat(right, old_size[1] - 2 * steps, 0)
right = np.expand_dims(right, 2)
right = np.repeat(right, 3, 2)
kernel[:steps, steps:-steps] = top
kernel[-steps:, steps:-steps] = down
kernel[steps:-steps, :steps] = left
kernel[steps:-steps, -steps:] = right
pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
gaussian_gt_img = gaussian_gt_img.astype(np.int64)
easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
gaussian_img = Image.fromarray(easy_img)
return gaussian_img
def get_new_image_name(org_img_name, func_name="update"):
head_tail = os.path.split(org_img_name)
head = head_tail[0]
tail = head_tail[1]
name_split = tail.split('.')[0].split('_')
this_new_uuid = str(uuid.uuid4())[0:4]
if len(name_split) == 1:
most_org_file_name = name_split[0]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
else:
assert len(name_split) == 4
most_org_file_name = name_split[3]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
return os.path.join(head, new_file_name)
class MaskFormer:
def __init__(self, device):
print(f"Initializing MaskFormer to {device}")
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(original_image.size)
class ImageEditing:
def __init__(self, device):
print(f"Initializing ImageEditing to {device}")
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.revision = 'fp16' if 'cuda' in device else None
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
@prompts(name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ")
def inference_remove(self, inputs):
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
@prompts(name="Replace Something From The Photo",
description="useful when you want to replace an object from the object description or "
"location with another object from its description. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, the object to be replaced, the object to be replaced with ")
def inference_replace(self, inputs):
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
original_image = Image.open(image_path)
original_size = original_image.size
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512))).images[0]
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
updated_image = updated_image.resize(original_size)
updated_image.save(updated_image_path)
print(
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class InstructPix2Pix:
def __init__(self, device):
print(f"Initializing InstructPix2Pix to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
@prompts(name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ")
def inference(self, inputs):
"""Change style of image."""
print("===>Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Text2Image:
def __init__(self, device):
print(f"Initializing Text2Image to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
torch_dtype=self.torch_dtype)
self.pipe.to(device)
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ")
def inference(self, text):
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
prompt = text + ', ' + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
print(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print(f"Initializing ImageCaptioning to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Get Photo Description",
description="useful when you want to know what is inside the photo. receives image_path as input. "
"The input to this tool should be a string, representing the image_path. ")
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
return captions
class Image2Canny:
def __init__(self, device):
print("Initializing Image2Canny")
self.low_threshold = 100
self.high_threshold = 200
@prompts(name="Edge Detection On Image",
description="useful when you want to detect the edge of the image. "
"like: detect the edges of this image, or canny detection on image, "
"or perform edge detection on this image, or detect the canny image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
image = np.array(image)
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny = Image.fromarray(canny)
updated_image_path = get_new_image_name(inputs, func_name="edge")
canny.save(updated_image_path)
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
return updated_image_path
class CannyText2Image:
def __init__(self, device):
print(f"Initializing CannyText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Canny Image",
description="useful when you want to generate a new real image from both the user description and a canny image."
" like: generate a real image of a object or something from this canny image,"
" or generate a new real image of a object or something from this edge image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
image.save(updated_image_path)
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Line:
def __init__(self, device):
print("Initializing Image2Line")
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Line Detection On Image",
description="useful when you want to detect the straight line of the image. "
"like: detect the straight lines of this image, or straight line detection on image, "
"or perform straight line detection on this image, or detect the straight line image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
mlsd = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="line-of")
mlsd.save(updated_image_path)
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
return updated_image_path
class LineText2Image:
def __init__(self, device):
print(f"Initializing LineText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Line Image",
description="useful when you want to generate a new real image from both the user description "
"and a straight line image. "
"like: generate a real image of a object or something from this straight line image, "
"or generate a new real image of a object or something from this straight lines. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description. ")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="line2image")
image.save(updated_image_path)
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
f"Output Text: {updated_image_path}")
return updated_image_path
class Image2Hed:
def __init__(self, device):
print("Initializing Image2Hed")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Hed Detection On Image",
description="useful when you want to detect the soft hed boundary of the image. "
"like: detect the soft hed boundary of this image, or hed boundary detection on image, "
"or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
hed = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
hed.save(updated_image_path)
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
return updated_image_path
class HedText2Image:
def __init__(self, device):
print(f"Initializing HedText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Soft Hed Boundary Image",
description="useful when you want to generate a new real image from both the user description "
"and a soft hed boundary image. "
"like: generate a real image of a object or something from this soft hed boundary image, "
"or generate a new real image of a object or something from this hed boundary. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
image.save(updated_image_path)
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Scribble:
def __init__(self, device):
print("Initializing Image2Scribble")
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Sketch Detection On Image",
description="useful when you want to generate a scribble of the image. "
"like: generate a scribble of this image, or generate a sketch from this image, "
"detect the sketch from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
scribble = self.detector(image, scribble=True)
updated_image_path = get_new_image_name(inputs, func_name="scribble")
scribble.save(updated_image_path)
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
return updated_image_path
class ScribbleText2Image:
def __init__(self, device):
print(f"Initializing ScribbleText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Sketch Image",
description="useful when you want to generate a new real image from both the user description and "
"a scribble image or a sketch image. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
image.save(updated_image_path)
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Pose:
def __init__(self, device):
print("Initializing Image2Pose")
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
@prompts(name="Pose Detection On Image",
description="useful when you want to detect the human pose of the image. "
"like: generate human poses of this image, or generate a pose image from this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
pose = self.detector(image)
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
pose.save(updated_image_path)
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
return updated_image_path
class PoseText2Image:
def __init__(self, device):
print(f"Initializing PoseText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.num_inference_steps = 20
self.seed = -1
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Pose Image",
description="useful when you want to generate a new real image from both the user description "
"and a human pose image. "
"like: generate a real image of a human from this human pose image, "
"or generate a new real image of a human from this pose. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
image.save(updated_image_path)
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Seg:
def __init__(self, device):
print("Initializing Image2Seg")
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
@prompts(name="Segmentation On Image",
description="useful when you want to detect segmentations of the image. "
"like: segment this image, or generate segmentations on this image, "
"or perform segmentation on this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = self.image_segmentor(pixel_values)
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(self.ade_palette)
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
segmentation = Image.fromarray(color_seg)
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
segmentation.save(updated_image_path)
print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}")
return updated_image_path
class SegText2Image:
def __init__(self, device):
print(f"Initializing SegText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Segmentations",
description="useful when you want to generate a new real image from both the user description and segmentations. "
"like: generate a real image of a object or something from this segmentation image, "
"or generate a new real image of a object or something from these segmentations. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
image.save(updated_image_path)
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Depth:
def __init__(self, device):
print("Initializing Image2Depth")
self.depth_estimator = pipeline('depth-estimation')
@prompts(name="Predict Depth On Image",
description="useful when you want to detect depth of the image. like: generate the depth from this image, "
"or detect the depth map on this image, or predict the depth for this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
depth = self.depth_estimator(image)['depth']
depth = np.array(depth)
depth = depth[:, :, None]
depth = np.concatenate([depth, depth, depth], axis=2)
depth = Image.fromarray(depth)
updated_image_path = get_new_image_name(inputs, func_name="depth")
depth.save(updated_image_path)
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class DepthText2Image:
def __init__(self, device):
print(f"Initializing DepthText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Depth",
description="useful when you want to generate a new real image from both the user description and depth image. "
"like: generate a real image of a object or something from this depth image, "
"or generate a new real image of a object or something from the depth map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
image.save(updated_image_path)
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class Image2Normal:
def __init__(self, device):
print("Initializing Image2Normal")
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
self.bg_threhold = 0.4
@prompts(name="Predict Normal Map On Image",
description="useful when you want to detect norm map of the image. "
"like: generate normal map from this image, or predict normal map of this image. "
"The input to this tool should be a string, representing the image_path")
def inference(self, inputs):
image = Image.open(inputs)
original_size = image.size
image = self.depth_estimator(image)['predicted_depth'][0]
image = image.numpy()
image_depth = image.copy()
image_depth -= np.min(image_depth)
image_depth /= np.max(image_depth)
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
x[image_depth < self.bg_threhold] = 0
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
y[image_depth < self.bg_threhold] = 0
z = np.ones_like(x) * np.pi * 2.0
image = np.stack([x, y, z], axis=2)
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
image = image.resize(original_size)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
image.save(updated_image_path)
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
return updated_image_path
class NormalText2Image:
def __init__(self, device):
print(f"Initializing NormalText2Image to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
torch_dtype=self.torch_dtype)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
' fewer digits, cropped, worst quality, low quality'
@prompts(name="Generate Image Condition On Normal Map",
description="useful when you want to generate a new real image from both the user description and normal map. "
"like: generate a real image of a object or something from this normal map, "
"or generate a new real image of a object or something from the normal map. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the user description")
def inference(self, inputs):
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = f'{instruct_text}, {self.a_prompt}'
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
guidance_scale=9.0).images[0]
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
image.save(updated_image_path)
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
f"Output Image: {updated_image_path}")
return updated_image_path
class VisualQuestionAnswering:
def __init__(self, device):
print(f"Initializing VisualQuestionAnswering to {device}")
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
@prompts(name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma separated string of two, representing the image_path and the question")
def inference(self, inputs):
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
raw_image = Image.open(image_path).convert('RGB')
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
f"Output Answer: {answer}")
return answer
class InfinityOutPainting:
template_model = True # Add this line to show this is a template model.
def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
# self.llm = OpenAI(temperature=0)
self.ImageCaption = ImageCaptioning
self.ImageEditing = ImageEditing
self.ImageVQA = VisualQuestionAnswering
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
def get_BLIP_vqa(self, image, question):
inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
self.ImageVQA.torch_dtype)
out = self.ImageVQA.model.generate(**inputs)
answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
return answer
def get_BLIP_caption(self, image):
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
self.ImageCaption.torch_dtype)
out = self.ImageCaption.model.generate(**inputs)
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
return BLIP_caption
# def check_prompt(self, prompt):
# check = f"Here is a paragraph with adjectives. " \
# f"{prompt} " \
# f"Please change all plural forms in the adjectives to singular forms. "
# return self.llm(check)
def get_imagine_caption(self, image, imagine):
BLIP_caption = self.get_BLIP_caption(image)
background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
style = self.get_BLIP_vqa(image, 'what is the style of this image')
imagine_prompt = f"let's pretend you are an excellent painter and now " \
f"there is an incomplete painting with {BLIP_caption} in the center, " \
f"please imagine the complete painting and describe it" \
f"you should consider the background color is {background_color}, the style is {style}" \
f"You should make the painting as vivid and realistic as possible" \
f"You can not use words like painting or picture" \
f"and you should use no more than 50 words to describe it"
# caption = self.llm(imagine_prompt) if imagine else BLIP_caption
caption = BLIP_caption
# caption = self.check_prompt(caption)
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
f'Prompt: {caption}')
return caption
def resize_image(self, image, max_size=100000, multiple=8):
aspect_ratio = image.size[0] / image.size[1]
new_width = int(math.sqrt(max_size * aspect_ratio))
new_height = int(new_width / aspect_ratio)
new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
return image.resize((new_width, new_height))
def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
old_img = original_img
while (old_img.size != tosize):
prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
crop_w = 15 if old_img.size[0] != tosize[0] else 0
crop_h = 15 if old_img.size[1] != tosize[1] else 0
old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
1])
temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
color="white")
x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
temp_canvas.paste(old_img, (x, y))
temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
height=resized_temp_canvas.height, width=resized_temp_canvas.width,
num_inference_steps=50).images[0].resize(
(temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
image = blend_gt2pt(old_img, image)
old_img = image
return old_img
@prompts(name="Extend An Image",
description="useful when you need to extend an image into a larger image."
"like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
"The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
def inference(self, inputs):
image_path, resolution = inputs.split(',')
width, height = resolution.split('x')
tosize = (int(width), int(height))
image = Image.open(image_path)
image = ImageOps.crop(image, (10, 10, 10, 10))
out_painted_image = self.dowhile(image, tosize, 4, True, False)
updated_image_path = get_new_image_name(image_path, func_name="outpainting")
out_painted_image.save(updated_image_path)
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
f"Output Image: {updated_image_path}")
return updated_image_path |