import gradio as gr import pandas as pd from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma, faiss from langchain_community.llms import HuggingFaceEndpoint, HuggingFaceHub from langchain.chains import LLMChain from langchain_community.document_loaders.csv_loader import CSVLoader from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import TextLoader from langchain_community import vectorstores from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.vectorstores import DocArrayInMemorySearch from langchain.document_loaders import TextLoader from langchain.chains import RetrievalQA, ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI from langchain.document_loaders import TextLoader from langchain.document_loaders import PyPDFLoader import panel as pn import param import re import os api_token = os.environ.get('HUGGINGFACEHUB_API_TOKEN') memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True ) model = HuggingFaceHub( huggingfacehub_api_token=api_token, repo_id="mistralai/Mistral-7B-Instruct-v0.2", task="conversational", model_kwargs={"temperature": 0.8, "max_length": 1000}, ) template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum. Keep the answer as concise as possible. Always say "thanks for asking!" at the end of the answer. {context} Question: {question} Helpful Answer:""" QA_CHAIN_PROMPT = PromptTemplate.from_template(template) def load_db(file, k): # load documents loader = PyPDFLoader(file) documents = loader.load() # split documents text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) docs = text_splitter.split_documents(documents) # define embedding embeddings = HuggingFaceEmbeddings() # create vector database from data db = vectorstores.FAISS.from_documents(docs, embeddings) # define retriever retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k}) # create a chatbot chain. Memory is managed externally. question_generator_chain = LLMChain(llm=model, prompt=QA_CHAIN_PROMPT) qa = ConversationalRetrievalChain.from_llm( llm=model, chain_type="stuff", retriever=retriever, return_source_documents=True, return_generated_question=True, ) return qa def greet(name, pdf_file): a = load_db(pdf_file, 3) r = a.invoke({"question": name, "chat_history": []}) match = re.search(r'Helpful Answer:(.*)', r['answer']) if match: helpful_answer = match.group(1).strip() return helpful_answer else: return "No helpful answer found." iface = gr.Interface(fn=greet, inputs=["text", "file"], outputs="text") iface.launch(share=True)