File size: 7,440 Bytes
92cb663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a78c573
92cb663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from transformers import  AutoTokenizer, AutoModelForSequenceClassification, AdamW, get_linear_schedule_with_warmup
from sklearn.metrics import  classification_report, f1_score
from torch.utils.data import Dataset, DataLoader
from argparse import ArgumentParser
from str2bool import str2bool
from torch import nn
import pandas as pd
import numpy as np
import torch


parser = ArgumentParser()
parser.add_argument("-dataframe", required=True, help="Path to dataframe with columns ['text', 'label', 'split']") # 'data/small_dataset.csv'
parser.add_argument("-model",required=True, help='Pre-traied model from huggingface or path to local folder with config.json') # '../norbert3-x-small/'
parser.add_argument("-custom_wrapper", default=False, type=lambda x: bool(str2bool(x)), help='Boolean argument - True if use custom wrapper, False if use AutoModelForSequenceClassification') # True
parser.add_argument("-lr", default='1e-05', help='Learning rate.')
parser.add_argument("-max_length", default='512', help='Max lenght of the sequence in tokens.')
parser.add_argument("-warmup", default='2', help='The number of steps for the warmup phase.')
parser.add_argument("-batch_size", default='4', help='Batch size.')
parser.add_argument("-epochs", default='20', help='Number of epochs for training.')
args = parser.parse_args()

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

class Dataset(Dataset):
  def __init__(self, texts, targets, tokenizer, max_len):
    self.texts = texts
    self.targets = targets
    self.tokenizer = tokenizer
    self.max_len = max_len

  def __len__(self):
    return len(self.texts)

  def __getitem__(self, item):
    text = str(self.texts[item])
    target = self.targets[item]
    encoding = self.tokenizer.encode_plus(
      text,
      add_special_tokens=True,
      max_length=self.max_len,
      return_token_type_ids=False,
      pad_to_max_length=True,
      return_attention_mask=True,
      truncation=True,
      return_tensors='pt',
    )

    return {
      'text': text,
      'input_ids': encoding['input_ids'].flatten(),
      'attention_mask': encoding['attention_mask'].flatten(),
      'targets': torch.tensor(target, dtype=torch.long)
    }


def create_data_loader(df, tokenizer, max_len, batch_size):
  ds = Dataset(
    texts=df.text.to_numpy(),
    targets=df.label.to_numpy(),
    tokenizer=tokenizer,
    max_len=max_len
  )
  return DataLoader(
    ds,
    batch_size=batch_size
  )

class SentimentClassifier(nn.Module):

  def __init__(self, n_classes):
    super(SentimentClassifier, self).__init__()

    if not args.custom_wrapper:
      self.bert = AutoModelForSequenceClassification.from_pretrained(args.model, num_labels=n_classes, ignore_mismatched_sizes=True)
    if args.custom_wrapper:
      from modeling_norbert import NorbertForSequenceClassification
      self.bert = NorbertForSequenceClassification.from_pretrained(args.model, num_labels=n_classes, ignore_mismatched_sizes=True)

  def forward(self, input_ids, attention_mask):

    bert_output = self.bert(
      input_ids=input_ids,
      attention_mask=attention_mask,
      return_dict=True
    )

    logits = bert_output.logits

    return logits


def train_epoch(
  model,
  data_loader,
  loss_fn,
  optimizer,
  device,
  scheduler,
  n_examples
):

  y_true, y_pred = [], []
  model = model.train()
  losses = []
  correct_predictions = 0
  
  for d in data_loader:
    input_ids = d["input_ids"].to(device)
    attention_mask = d["attention_mask"].to(device)
    targets = d["targets"].to(device)
    y_true += targets.tolist()
    outputs = model(
      input_ids=input_ids,
      attention_mask=attention_mask
    )
    preds_idxs = torch.max(outputs, dim=1).indices
    y_pred += preds_idxs.numpy().tolist()
    loss = loss_fn(outputs, targets)
    correct_predictions += torch.sum(preds_idxs == targets)

    losses.append(loss.item())
    loss.backward()
    nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
    optimizer.step()
    scheduler.step()
    optimizer.zero_grad()
  f1 = f1_score(y_true, y_pred, average='macro')

  return correct_predictions.double() / n_examples, np.mean(losses), f1

def eval_model(model, data_loader, loss_fn, device, n_examples):
  model = model.eval()
  losses = []
  correct_predictions = 0
  y_true, y_pred = [], []
  with torch.no_grad():
    for d in data_loader:
      input_ids = d["input_ids"].to(device)
      attention_mask = d["attention_mask"].to(device)
      targets = d["targets"].to(device)
      y_true += targets.tolist()
      outputs = model(
        input_ids=input_ids,
        attention_mask=attention_mask
      )
      _, preds = torch.max(outputs, dim=1)
      y_pred += preds.tolist()
      loss = loss_fn(outputs, targets)
      correct_predictions += torch.sum(preds == targets)
      losses.append(loss.item())
  f1 = f1_score(y_true, y_pred, average='macro')
  report = classification_report(y_true, y_pred)
  return correct_predictions.double() / n_examples, np.mean(losses), f1, report


df = pd.read_csv(args.dataframe)

df_train = df[df['split'] == 'train']
df_val = df[df['split'] == 'dev']
df_test = df[df['split'] == 'test']

print(f'Train samples: {len(df_train)}')
print(f'Validation samples: {len(df_val)}')
print(f'Test samples: {len(df_test)}')

tokenizer = AutoTokenizer.from_pretrained(args.model)

max_length = int(args.max_length)
batch_size = int(args.batch_size)
epochs = int(args.epochs)

train_data_loader = create_data_loader(df_train, tokenizer, max_length, batch_size)
val_data_loader = create_data_loader(df_val, tokenizer, max_length, batch_size)
test_data_loader = create_data_loader(df_test, tokenizer, max_length, batch_size)

class_names = df.label.unique()
model = SentimentClassifier(len(class_names))
model = model.to(device)

loss_fn = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=float(args.lr))
total_steps = len(train_data_loader) * epochs
scheduler = get_linear_schedule_with_warmup(
  optimizer,
  num_warmup_steps=int(args.warmup),
  num_training_steps=total_steps
)

for epoch in range(epochs):
    print(f'Epoch {epoch + 1}/{epochs}')
    print('-' * 10)
    train_acc, train_loss, train_f1 = train_epoch(
        model,
        train_data_loader,
        loss_fn,
        optimizer,
        device,
        scheduler,
        len(df_train)
    )
    print()
    print(f'Train loss -- {train_loss} -- accuracy {train_acc} -- f1 {train_f1}')

    # save model
    model_name = args.model.split('/')[-1] if args.model.split('/')[-1] != '' else args.model.split('/')[-2]  
    torch.save(model.state_dict(),f'saved_models/{model_name}_epoch_{epochs}.bin')

    val_acc, val_loss, val_f1, report = eval_model(
        model,
        val_data_loader,
        loss_fn,
        device,
        len(df_val)
    )
    print()
    print(f'Val loss {val_loss} -- accuracy -- {val_acc} -- f1 {val_f1}')
    print(report)


test_acc, test_loss, test_f1, test_report = eval_model(
                                            model,
                                            test_data_loader,
                                            loss_fn,
                                            device,
                                            len(df_test)
                                          )


print()
print('-------------TESTINGS-----------------')
print()
print(f'Test accuracy {test_acc}, f1 {test_f1}')
print(test_report)