Spaces:
Sleeping
Sleeping
File size: 6,961 Bytes
251e479 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Copyright (c) OpenMMLab. All rights reserved.
r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501
Wrap some nn modules to support empty tensor input. Currently, these wrappers
are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask
heads are trained on only positive RoIs.
"""
import math
import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair, _triple
from .registry import CONV_LAYERS, UPSAMPLE_LAYERS
if torch.__version__ == 'parrots':
TORCH_VERSION = torch.__version__
else:
# torch.__version__ could be 1.3.1+cu92, we only need the first two
# for comparison
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
def obsolete_torch_version(torch_version, version_threshold):
return torch_version == 'parrots' or torch_version <= version_threshold
class NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return NewEmptyTensorOp.apply(grad, shape), None
@CONV_LAYERS.register_module('Conv', force=True)
class Conv2d(nn.Conv2d):
def forward(self, x):
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride, self.dilation):
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
@CONV_LAYERS.register_module('Conv3d', force=True)
class Conv3d(nn.Conv3d):
def forward(self, x):
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride, self.dilation):
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
@CONV_LAYERS.register_module()
@CONV_LAYERS.register_module('deconv')
@UPSAMPLE_LAYERS.register_module('deconv', force=True)
class ConvTranspose2d(nn.ConvTranspose2d):
def forward(self, x):
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride,
self.dilation, self.output_padding):
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
@CONV_LAYERS.register_module()
@CONV_LAYERS.register_module('deconv3d')
@UPSAMPLE_LAYERS.register_module('deconv3d', force=True)
class ConvTranspose3d(nn.ConvTranspose3d):
def forward(self, x):
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 4)):
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride,
self.dilation, self.output_padding):
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
class MaxPool2d(nn.MaxPool2d):
def forward(self, x):
# PyTorch 1.9 does not support empty tensor inference yet
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
_pair(self.padding), _pair(self.stride),
_pair(self.dilation)):
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
o = math.ceil(o) if self.ceil_mode else math.floor(o)
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
return empty
return super().forward(x)
class MaxPool3d(nn.MaxPool3d):
def forward(self, x):
# PyTorch 1.9 does not support empty tensor inference yet
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 9)):
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size),
_triple(self.padding),
_triple(self.stride),
_triple(self.dilation)):
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
o = math.ceil(o) if self.ceil_mode else math.floor(o)
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
return empty
return super().forward(x)
class Linear(torch.nn.Linear):
def forward(self, x):
# empty tensor forward of Linear layer is supported in Pytorch 1.6
if x.numel() == 0 and obsolete_torch_version(TORCH_VERSION, (1, 5)):
out_shape = [x.shape[0], self.out_features]
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
|