Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
class InputPadder: | |
""" Pads images such that dimensions are divisible by 8 """ | |
def __init__(self, dims, mode='sintel', padding_factor=8): | |
self.ht, self.wd = dims[-2:] | |
pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor | |
pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor | |
if mode == 'sintel': | |
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] | |
else: | |
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] | |
def pad(self, *inputs): | |
return [F.pad(x, self._pad, mode='replicate') for x in inputs] | |
def unpad(self, x): | |
ht, wd = x.shape[-2:] | |
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] | |
return x[..., c[0]:c[1], c[2]:c[3]] | |
def coords_grid(batch, ht, wd, normalize=False): | |
if normalize: # [-1, 1] | |
coords = torch.meshgrid(2 * torch.arange(ht) / (ht - 1) - 1, | |
2 * torch.arange(wd) / (wd - 1) - 1) | |
else: | |
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) | |
coords = torch.stack(coords[::-1], dim=0).float() | |
return coords[None].repeat(batch, 1, 1, 1) # [B, 2, H, W] | |
def compute_out_of_boundary_mask(flow): | |
# flow: [B, 2, H, W] | |
assert flow.dim() == 4 and flow.size(1) == 2 | |
b, _, h, w = flow.shape | |
init_coords = coords_grid(b, h, w).to(flow.device) | |
corres = init_coords + flow # [B, 2, H, W] | |
max_w = w - 1 | |
max_h = h - 1 | |
valid_mask = (corres[:, 0] >= 0) & (corres[:, 0] <= max_w) & (corres[:, 1] >= 0) & (corres[:, 1] <= max_h) | |
# in case very large flow | |
flow_mask = (flow[:, 0].abs() <= max_w) & (flow[:, 1].abs() <= max_h) | |
valid_mask = valid_mask & flow_mask | |
return valid_mask # [B, H, W] | |
def count_parameters(model): | |
num = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
return num | |